The 2-twist-spun trefoil has the triple point number four
HTML articles powered by AMS MathViewer
- by Shin Satoh and Akiko Shima
- Trans. Amer. Math. Soc. 356 (2004), 1007-1024
- DOI: https://doi.org/10.1090/S0002-9947-03-03181-7
- Published electronically: August 25, 2003
- PDF | Request permission
Abstract:
The triple point number of an embedded surface in 4-space is the minimal number of the triple points on all the projection images into 3-space. We show that the 2-twist-spun trefoil has the triple point number four.References
- Thomas F. Banchoff, Double tangency theorems for pairs of submanifolds, Geometry Symposium, Utrecht 1980 (Utrecht, 1980) Lecture Notes in Math., vol. 894, Springer, Berlin-New York, 1981, pp. 26–48. MR 655418
- J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito, State-sum invariants of knotted curves and surfaces from quandle cohomology, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 146–156. MR 1725613, DOI 10.1090/S1079-6762-99-00073-6
- —, Quandle cohomology and state-sum invariants of knotted curves and surfaces, preprint.
- J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, and Masahico Saito, Computations of quandle cocycle invariants of knotted curves and surfaces, Adv. Math. 157 (2001), no. 1, 36–94. MR 1808844, DOI 10.1006/aima.2000.1939
- J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, and Masahico Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001), no. 2-3, 135–155. MR 1812049, DOI 10.1016/S0022-4049(00)00013-X
- J. Scott Carter, Seiichi Kamada, and Masahico Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001), no. 3, 345–386. MR 1825963, DOI 10.1142/S0218216501000901
- —, Diagrammatic computations for quandles and cocycle knot invariants, preprint.
- J. Scott Carter and Masahico Saito, Canceling branch points on projections of surfaces in $4$-space, Proc. Amer. Math. Soc. 116 (1992), no. 1, 229–237. MR 1126191, DOI 10.1090/S0002-9939-1992-1126191-0
- J. Scott Carter and Masahico Saito, Normal Euler classes of knotted surfaces and triple points on projections, Proc. Amer. Math. Soc. 125 (1997), no. 2, 617–623. MR 1372025, DOI 10.1090/S0002-9939-97-03760-X
- J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR 1487374, DOI 10.1090/surv/055
- Tim Cochran, Ribbon knots in $S^{4}$, J. London Math. Soc. (2) 28 (1983), no. 3, 563–576. MR 724727, DOI 10.1112/jlms/s2-28.3.563
- Roger Fenn and Colin Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), no. 4, 343–406. MR 1194995, DOI 10.1142/S0218216592000203
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- Deborah L. Goldsmith and Louis H. Kauffman, Twist spinning revisited, Trans. Amer. Math. Soc. 239 (1978), 229–251. MR 487047, DOI 10.1090/S0002-9947-1978-0487047-7
- Ayumu Inoue, Quandle homomorphisms of knot quandles to Alexander quandles, J. Knot Theory Ramifications 10 (2001), no. 6, 813–821. MR 1840269, DOI 10.1142/S0218216501001177
- David Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), no. 1, 37–65. MR 638121, DOI 10.1016/0022-4049(82)90077-9
- T. Kanenobu and A. Shima, Two filtrations of ribbon $2$-knots, Topology Appl. 121 (2002), 143–168.
- Akio Kawauchi, Tetsuo Shibuya, and Shin’ichi Suzuki, Descriptions on surfaces in four-space. I. Normal forms, Math. Sem. Notes Kobe Univ. 10 (1982), no. 1, 75–125. MR 672939
- Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. MR 1417494
- R. A. Litherland, Deforming twist-spun knots, Trans. Amer. Math. Soc. 250 (1979), 311–331. MR 530058, DOI 10.1090/S0002-9947-1979-0530058-4
- R. A. Litherland and S. Nelson, The Betti numbers of some finite racks, preprint.
- Yoshihiko Marumoto and Yasutaka Nakanishi, A note on the Zeeman theorem, Kobe J. Math. 8 (1991), no. 1, 67–71. MR 1134705
- S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119(161) (1982), no. 1, 78–88, 160 (Russian). MR 672410
- T. Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, preprint.
- Dennis Roseman, Reidemeister-type moves for surfaces in four-dimensional space, Knot theory (Warsaw, 1995) Banach Center Publ., vol. 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 347–380. MR 1634466
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744, DOI 10.1007/978-3-642-81735-9
- —, There are two $2$-twist-spun trefoils, preprint.
- Shin Satoh, On non-orientable surfaces in $4$-space which are projected with at most one triple point, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2789–2793. MR 1652241, DOI 10.1090/S0002-9939-00-05310-7
- Shin Satoh, Lifting a generic surface in 3-space to an embedded surface in 4-space, Topology Appl. 106 (2000), no. 1, 103–113. MR 1769336, DOI 10.1016/S0166-8641(99)00074-7
- Shin Satoh, Minimal triple point numbers of some non-orientable surface-links, Pacific J. Math. 197 (2001), no. 1, 213–221. MR 1810216, DOI 10.2140/pjm.2001.197.213
- Shin Satoh, Surface diagrams of twist-spun 2-knots, J. Knot Theory Ramifications 11 (2002), no. 3, 413–430. Knots 2000 Korea, Vol. 1 (Yongpyong). MR 1905695, DOI 10.1142/S0218216502001718
- A. Shima, Knotted $2$-spheres whose projections into $3$-space contain at most two triple points are ribbon $2$-knots, preprint.
- —, Colorings and Alexander polynomials for ribbon $2$-knots, J. Knot Theory Ramifications 11 (2002), 403–412.
- Takeshi Yajima, On simply knotted spheres in $R^{4}$, Osaka Math. J. 1 (1964), 133–152. MR 172280
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- Shin Satoh
- Affiliation: Department of Mathematics, Chiba University, Inage, Chiba, 263-8522, Japan
- Email: satoh@math.s.chiba-u.ac.jp
- Akiko Shima
- Affiliation: Department of Mathematics, Tokai University, 1117 Kitakaname, Hiratuka, Kanagawa, 259-1292, Japan
- Email: shima@keyaki.cc.u-tokai.ac.jp
- Received by editor(s): October 15, 2001
- Received by editor(s) in revised form: July 24, 2002
- Published electronically: August 25, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1007-1024
- MSC (2000): Primary 57Q45; Secondary 57Q35
- DOI: https://doi.org/10.1090/S0002-9947-03-03181-7
- MathSciNet review: 1984465