Extensions contained in ideals
HTML articles powered by AMS MathViewer
- by Dan Kucerovsky
- Trans. Amer. Math. Soc. 356 (2004), 1025-1043
- DOI: https://doi.org/10.1090/S0002-9947-03-03297-5
- Published electronically: August 25, 2003
- PDF | Request permission
Abstract:
We prove a Weyl-von Neumann type absorption theorem for extensions which are not full, and give a condition for constructing infinite repeats contained in an ideal. We also clear up some questions associated with the purely large criterion for full extensions to be absorbing.References
- Charles A. Akemann, Joel Anderson, and Gert K. Pedersen, Excising states of $C^\ast$-algebras, Canad. J. Math. 38 (1986), no. 5, 1239–1260. MR 869724, DOI 10.4153/CJM-1986-063-7
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645, DOI 10.2140/pjm.1977.71.335
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- Paul J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199–205. MR 104982
- George A. Elliott, Derivations of matroid $C^{\ast }$-algebras. II, Ann. of Math. (2) 100 (1974), 407–422. MR 352999, DOI 10.2307/1971079
- George A. Elliott and Dan Kucerovsky, An abstract Voiculescu-Brown-Douglas-Fillmore absorption theorem, Pacific J. Math. 198 (2001), no. 2, 385–409. MR 1835515, DOI 10.2140/pjm.2001.198.385
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150. MR 587371
- E. Kirchberg, The classification of purely infinite $C^{*}$-algebras using Kasparov’s theory $K$-theory, preprint, 1995.
- Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite $C^\ast$-algebras, Amer. J. Math. 122 (2000), no. 3, 637–666. MR 1759891, DOI 10.1353/ajm.2000.0021
- Jacob v. B. Hjelmborg and Mikael Rørdam, On stability of $C^*$-algebras, J. Funct. Anal. 155 (1998), no. 1, 153–170. MR 1623142, DOI 10.1006/jfan.1997.3221
- J. A. Mingo, $K$-theory and multipliers of stable $C^\ast$-algebras, Trans. Amer. Math. Soc. 299 (1987), no. 1, 397–411. MR 869419, DOI 10.1090/S0002-9947-1987-0869419-7
- Gert K. Pedersen, A strict version of the non-commutative Urysohn lemma, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2657–2660. MR 1389532, DOI 10.1090/S0002-9939-97-03861-6
- Mikael Rørdam, Ideals in the multiplier algebra of a stable $C^\ast$-algebra, J. Operator Theory 25 (1991), no. 2, 283–298. MR 1203034
- Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I, Pacific J. Math. 155 (1992), no. 1, 169–197. MR 1174483, DOI 10.2140/pjm.1992.155.169
Bibliographic Information
- Dan Kucerovsky
- Affiliation: Department of Mathematics and Statistics, University of New Brunswick-Fredericton, Fredericton, New Brunswick, Canada E3B 5A3
- Email: dkucerov@unb.ca
- Received by editor(s): July 29, 2002
- Published electronically: August 25, 2003
- Additional Notes: This research was supported by the NSERC, under grant # 228065–00
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1025-1043
- MSC (2000): Primary 19K35; Secondary 46L85, 46L80
- DOI: https://doi.org/10.1090/S0002-9947-03-03297-5
- MathSciNet review: 1984466