How to do a $p$-descent on an elliptic curve
HTML articles powered by AMS MathViewer
- by Edward F. Schaefer and Michael Stoll
- Trans. Amer. Math. Soc. 356 (2004), 1209-1231
- DOI: https://doi.org/10.1090/S0002-9947-03-03366-X
- Published electronically: October 27, 2003
- PDF | Request permission
Abstract:
In this paper, we describe an algorithm that reduces the computation of the (full) $p$-Selmer group of an elliptic curve $E$ over a number field to standard number field computations such as determining the ($p$-torsion of) the $S$-class group and a basis of the $S$-units modulo $p$th powers for a suitable set $S$ of primes. In particular, we give a result reducing this set $S$ of ‘bad primes’ to a very small set, which in many cases only contains the primes above $p$. As of today, this provides a feasible algorithm for performing a full $3$-descent on an elliptic curve over $\mathbb Q$, but the range of our algorithm will certainly be enlarged by future improvements in computational algebraic number theory. When the Galois module structure of $E[p]$ is favorable, simplifications are possible and $p$-descents for larger $p$ are accessible even today. To demonstrate how the method works, several worked examples are included.References
- M. F. Atiyah and C. T. C. Wall, Cohomology of groups, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Thompson, Washington, D.C., 1967, pp. 94–115. MR 0219512
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- N. R. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract, vol. 133, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2002. Dissertation, University of Leiden, Leiden, 1999. MR 1916903
- J. W. S. Cassels, Second descents for elliptic curves, J. Reine Angew. Math. 494 (1998), 101–127. Dedicated to Martin Kneser on the occasion of his 70th birthday. MR 1604468, DOI 10.1515/crll.1998.001
- J. W. S. Cassels, Arithmetic on curves of genus $1$. I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52–99. MR 109136, DOI 10.1515/crll.1959.202.52
- G. A. Miller, Groups which contain ten or eleven proper subgroups, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 540–543. MR 31, DOI 10.1073/pnas.25.10.540
- Yen-Mei J. Chen, The Selmer groups and the ambiguous ideal class groups of cubic fields, Bull. Austral. Math. Soc. 54 (1996), no. 2, 267–274. MR 1411536, DOI 10.1017/S000497270001772X
- Yen-Mei J. Chen, The Selmer groups of elliptic curves and the ideal class groups of quadratic fields, Comm. Algebra 25 (1997), no. 7, 2157–2167. MR 1451686, DOI 10.1080/00927879708825980
- J. E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
- John E. Cremona and Barry Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13–28. MR 1758797, DOI 10.1080/10586458.2000.10504633
- Matt DeLong, A formula for the Selmer group of a rational three-isogeny, Acta Arith. 105 (2002), no. 2, 119–131. MR 1932762, DOI 10.4064/aa105-2-2
- Z. Djabri, Edward F. Schaefer, and N. P. Smart, Computing the $p$-Selmer group of an elliptic curve, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5583–5597. MR 1694286, DOI 10.1090/S0002-9947-00-02535-6
- T. Dokchitser, Deformations on $p$-divisible groups and $p$-descent on elliptic curves, Ph.D. dissertation, Universiteit Utrecht, 2000.
- T. Fisher, On 5 and 7 descents for elliptic curves, Ph.D. thesis, Cambridge, UK, 2000.
- E. Victor Flynn and Joseph L. Wetherell, Finding rational points on bielliptic genus 2 curves, Manuscripta Math. 100 (1999), no. 4, 519–533. MR 1734798, DOI 10.1007/s002290050215
- Gerhard Frey, Die Klassengruppen quadratischer und kubischer Zahlkörper und die Selmergruppen gewisser elliptischer Kurven, Manuscripta Math. 16 (1975), no. 4, 333–362 (German, with English summary). MR 379504, DOI 10.1007/BF01323464
- M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, KANT V4, J. Symbolic Comput. 24 (1997), no. 3-4, 267–283. Computational algebra and number theory (London, 1993). MR 1484479, DOI 10.1006/jsco.1996.0126
- MAGMA is described in W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symb. Comp. 24 (1997), 235–265. (Also see the Magma home page at http://www.maths.usyd.edu.au:8000/u/magma/ .)
- J. R. Merriman, S. Siksek, and N. P. Smart, Explicit $4$-descents on an elliptic curve, Acta Arith. 77 (1996), no. 4, 385–404. MR 1414518, DOI 10.4064/aa-77-4-385-404
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- L.J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192.
- Jan Nekovář, Class numbers of quadratic fields and Shimura’s correspondence, Math. Ann. 287 (1990), no. 4, 577–594. MR 1066816, DOI 10.1007/BF01446915
- PARI homepage: http://www.parigp-home.de/
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- Karl Rubin, The one-variable main conjecture for elliptic curves with complex multiplication, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 353–371. MR 1110401, DOI 10.1017/CBO9780511526053.015
- Karl Rubin, Descents on elliptic curves with complex multiplication, Séminaire de Théorie des Nombres, Paris 1985–86, Progr. Math., vol. 71, Birkhäuser Boston, Boston, MA, 1987, pp. 165–173. MR 1017911, DOI 10.1007/978-1-4757-4267-1_{1}2
- Philippe Satgé, Groupes de Selmer et corps cubiques, J. Number Theory 23 (1986), no. 3, 294–317 (French). MR 846960, DOI 10.1016/0022-314X(86)90075-2
- Edward F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), no. 3, 447–471. MR 1612262, DOI 10.1007/s002080050156
- Edward F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), no. 1, 79–114. MR 1370197, DOI 10.1006/jnth.1996.0006
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- D. Simon, Équations dans les corps de nombres et discriminants minimaux, Thèse, Bordeaux, 1998.
- Denis Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7–17. MR 1916919, DOI 10.1112/S1461157000000668
- Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277. MR 1829626, DOI 10.4064/aa98-3-4
- Jaap Top, Descent by $3$-isogeny and $3$-rank of quadratic fields, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 303–317. MR 1368429
- A. Weil, Sur un théorème de Mordell, Bull. Sci. Math. (2) 54 (1930), 182–191.
Bibliographic Information
- Edward F. Schaefer
- Affiliation: Department of Mathematics and Computer Science, Santa Clara University, Santa Clara, California 95053
- Email: eschaefe@math.scu.edu
- Michael Stoll
- Affiliation: School of Engineering and Science, International University Bremen, P.O. Box 750 561, 28 725 Bremen, Germany
- Email: m.stoll@iu-bremen.de
- Received by editor(s): January 24, 2003
- Published electronically: October 27, 2003
- Additional Notes: We are indebted to Claus Fieker for his invaluable help in getting KANT to produce a basis for the group $A(S,5)^{(1)}$ needed in the example in Section 8.2. We thank John Cremona, Zafer Djabri, Everett Howe, Hendrik W. Lenstra Jr., Karl Rubin, Nigel Smart and Don Zagier for useful and interesting discussions. The first author was supported by National Security Agency grant MSPF-02Y-033
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1209-1231
- MSC (2000): Primary 11G05; Secondary 14H25, 14H52, 14Q05
- DOI: https://doi.org/10.1090/S0002-9947-03-03366-X
- MathSciNet review: 2021618