Symplectic semifield planes and ${\mathbb Z}_4$–linear codes
HTML articles powered by AMS MathViewer
- by William M. Kantor and Michael E. Williams
- Trans. Amer. Math. Soc. 356 (2004), 895-938
- DOI: https://doi.org/10.1090/S0002-9947-03-03401-9
- Published electronically: October 9, 2003
- PDF | Request permission
Abstract:
There are lovely connections between certain characteristic 2 semifields and their associated translation planes and orthogonal spreads on the one hand, and $\mathbb {Z}_4$–linear Kerdock and Preparata codes on the other. These inter–relationships lead to the construction of large numbers of objects of each type. In the geometric context we construct and study large numbers of nonisomorphic affine planes coordinatized by semifields; or, equivalently, large numbers of non–isotopic semifields: their numbers are not bounded above by any polynomial in the order of the plane. In the coding theory context we construct and study large numbers of $\mathbb {Z}_4$–linear Kerdock and Preparata codes. All of these are obtained using large numbers of orthogonal spreads of orthogonal spaces of maximal Witt index over finite fields of characteristic 2. We also obtain large numbers of “boring” affine planes in the sense that the full collineation group fixes the line at infinity pointwise, as well as large numbers of Kerdock codes “boring” in the sense that each has as small an automorphism group as possible. The connection with affine planes is a crucial tool used to prove inequivalence theorems concerning the orthogonal spreads and associated codes, and also to determine their full automorphism groups.References
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- A. A. Albert, Finite division algebras and finite planes, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 53–70. MR 0116036
- A. A. Albert, Isotopy for generalized twisted fields, An. Acad. Brasil. Ci. 33 (1961), 265–275. MR 139639
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- S. Ball and M. R. Brown, The six semifield planes associated with a semifield flock (preprint).
- Edgar H. Brown Jr., Generalizations of the Kervaire invariant, Ann. of Math. (2) 95 (1972), 368–383. MR 293642, DOI 10.2307/1970804
- A. R. Calderbank, P. J. Cameron, W. M. Kantor, and J. J. Seidel, $Z_4$-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc. (3) 75 (1997), no. 2, 436–480. MR 1455862, DOI 10.1112/S0024611597000403
- Chris Charnes, A nonsymmetric translation plane of order $17^2$, J. Geom. 37 (1990), no. 1-2, 77–83. MR 1041980, DOI 10.1007/BF01230360
- C. Charnes and U. Dempwolff, The translation planes of order $49$ and their automorphism groups, Math. Comp. 67 (1998), no. 223, 1207–1224. MR 1468940, DOI 10.1090/S0025-5718-98-00961-2
- M. Cordero and G. P. Wene, A survey of finite semifields, Discrete Math. 208/209 (1999), 125–137. Combinatorics (Assisi, 1996). MR 1725526, DOI 10.1016/S0012-365X(99)00068-0
- P. Dembowski, Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Springer-Verlag, Berlin-New York, 1968. MR 0233275, DOI 10.1007/978-3-642-62012-6
- J. F. Dillon, Elementary Hadamard difference sets. Ph.D. thesis, U. of Maryland 1974.
- R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Pura Appl. (4) 114 (1977), 173–194. MR 493729, DOI 10.1007/BF02413785
- M. J. Ganley, Polarities in translation planes, Geometriae Dedicata 1 (1972), no. 1, 103–116. MR 307036, DOI 10.1007/BF00147384
- Marshall Hall Jr. and D. E. Knuth, Combinatorial analysis and computers, Amer. Math. Monthly 72 (1965), no. 2, 21–28. MR 172812, DOI 10.2307/2313307
- A. Roger Hammons Jr., P. Vijay Kumar, A. R. Calderbank, N. J. A. Sloane, and Patrick Solé, The $\textbf {Z}_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046, DOI 10.1109/18.312154
- William M. Kantor, Spreads, translation planes and Kerdock sets. I, SIAM J. Algebraic Discrete Methods 3 (1982), no. 2, 151–165. MR 655556, DOI 10.1137/0603015
- William M. Kantor, An exponential number of generalized Kerdock codes, Inform. and Control 53 (1982), no. 1-2, 74–80. MR 715523, DOI 10.1016/S0019-9958(82)91139-1
- William M. Kantor, Codes, quadratic forms and finite geometries, Different aspects of coding theory (San Francisco, CA, 1995) Proc. Sympos. Appl. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1995, pp. 153–177. MR 1368640, DOI 10.1090/psapm/050/1368640
- William M. Kantor, Projective planes of order $q$ whose collineation groups have order $q^2$, J. Algebraic Combin. 3 (1994), no. 4, 405–425. MR 1293823, DOI 10.1023/A:1022464027664
- William M. Kantor, Orthogonal spreads and translation planes, Progress in algebraic combinatorics (Fukuoka, 1993) Adv. Stud. Pure Math., vol. 24, Math. Soc. Japan, Tokyo, 1996, pp. 227–242. MR 1414469, DOI 10.2969/aspm/02410227
- W. M. Kantor, Commutative semifields and symplectic spreads (to appear in J. Algebra).
- A. M. Kerdock, A class of low-rate nonlinear binary codes, Information and Control 20 (1972), 182–187; ibid. 21 (1972), 395. MR 345707, DOI 10.1016/S0019-9958(72)90376-2
- Donald E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965), 182–217. MR 175942, DOI 10.1016/0021-8693(65)90018-9
- Donald E. Knuth, A class of projective planes, Trans. Amer. Math. Soc. 115 (1965), 541–549. MR 202041, DOI 10.1090/S0002-9947-1965-0202041-X
- William M. Kantor and Michael E. Williams, New flag-transitive affine planes of even order, J. Combin. Theory Ser. A 74 (1996), no. 1, 1–13. MR 1383501, DOI 10.1006/jcta.1996.0033
- A. Maschietti, Symplectic translation planes and line ovals. Adv. Geom. 3 (2003) 123–143.
- Rudolf Mathon and Gordon F. Royle, The translation planes of order $49$, Des. Codes Cryptogr. 5 (1995), no. 1, 57–72. MR 1313377, DOI 10.1007/BF01388504
- Franco P. Preparata, A class of optimum nonlinear double-error-correcting codes, Information and Control 13 (1968), 378–400. MR 242563, DOI 10.1016/S0019-9958(68)90874-7
- Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992. MR 1189139
- R. J. Walker, Determination of division algebras with $32$ elements, Proc. Sympos. Appl. Math., Vol. XV, Amer. Math. Soc., Providence, R.I., 1963, pp. 83–85. MR 0157991
- M. E. Williams, $\mathbb {Z}_4$–Linear Kerdock codes, orthogonal geometries, and non–associative division algebras. Ph.D. thesis, U. of Oregon 1995.
Bibliographic Information
- William M. Kantor
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: kantor@math.uoregon.edu
- Michael E. Williams
- Affiliation: Raytheon, Dallas, Texas 75042
- Email: Michael_E1_Williams@raytheon.com
- Received by editor(s): May 29, 2002
- Published electronically: October 9, 2003
- Additional Notes: This research was supported in part by the National Science Foundation.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 895-938
- MSC (2000): Primary 51A40, 94B27; Secondary 05E20, 05B25, 17A35, 51A35, 51A50
- DOI: https://doi.org/10.1090/S0002-9947-03-03401-9
- MathSciNet review: 1984461
Dedicated: In memory of Jaap Seidel