Analytic order of singular and critical points
HTML articles powered by AMS MathViewer
- by Eugenii Shustin
- Trans. Amer. Math. Soc. 356 (2004), 953-985
- DOI: https://doi.org/10.1090/S0002-9947-03-03409-3
- Published electronically: August 21, 2003
- PDF | Request permission
Abstract:
We deal with the following closely related problems: (i) For a germ of a reduced plane analytic curve, what is the minimal degree of an algebraic curve with a singular point analytically equivalent (isomorphic) to the given one? (ii) For a germ of a holomorphic function in two variables with an isolated critical point, what is the minimal degree of a polynomial, equivalent to the given function up to a local holomorphic coordinate change? Classically known estimates for such a degree $d$ in these questions are $\sqrt {\mu }+1\le d\le \mu +1$, where $\mu$ is the Milnor number. Our result in both the problems is $d\le a\sqrt {\mu }$ with an absolute constant $a$. As a corollary, we obtain asymptotically proper sufficient conditions for the existence of algebraic curves with prescribed singularities on smooth algebraic surfaces.References
- J. Alexander and A. Hirschowitz, An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), no. 2, 303–325. MR 1756998, DOI 10.1007/s002220000053
- C. Ciliberto and R. Miranda, The Segre and Harbourne-Hirschowitz conjectures, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 37–51. MR 1866894
- Edward D. Davis, $0$-dimensional subschemes of $\textbf {P}^2$: new application of Castelnuovo’s function, Ann. Univ. Ferrara Sez. VII (N.S.) 32 (1986), 93–107 (1987). MR 901590
- Steven Diaz and Joe Harris, Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 309 (1988), no. 2, 433–468. MR 961600, DOI 10.1090/S0002-9947-1988-0961600-2
- Gert-Martin Greuel and Christoph Lossen, Equianalytic and equisingular families of curves on surfaces, Manuscripta Math. 91 (1996), no. 3, 323–342. MR 1416715, DOI 10.1007/BF02567958
- Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), no. 3, 539–580. MR 1645074, DOI 10.1007/s002220050254
- Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebraic Geom. 9 (2000), no. 4, 663–710. MR 1775310
- D. A. Gudkov and E. I. Shustin, On the intersection of the close algebraic curves, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 278–289. MR 770248, DOI 10.1007/BFb0099944
- S. M. Guseĭn-Zade and N. N. Nekhoroshev, On singularities of type $A_k$ on simple curves of fixed degree, Funktsional. Anal. i Prilozhen. 34 (2000), no. 3, 69–70 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 34 (2000), no. 3, 214–215. MR 1802321, DOI 10.1007/BF02482412
- Atsuko Hirano, Construction of plane curves with cusps, Saitama Math. J. 10 (1992), 21–24. MR 1212294
- F. Hirzebruch, Singularities of algebraic surfaces and characteristic numbers, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 141–155. MR 860410, DOI 10.1090/conm/058.1/860410
- André Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles génériques, J. Reine Angew. Math. 397 (1989), 208–213 (French). MR 993223, DOI 10.1515/crll.1989.397.208
- Thomas Keilen and Ilya Tyomkin, Existence of curves with prescribed topological singularities, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1837–1860. MR 1881019, DOI 10.1090/S0002-9947-01-02877-X
- Christoph Lossen, New asymptotics for the existence of plane curves with prescribed singularities, Comm. Algebra 27 (1999), no. 7, 3263–3282. MR 1695287, DOI 10.1080/00927879908826626
- John N. Mather, Stability of $C^{\infty }$ mappings. III. Finitely determined mapgerms, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 279–308. MR 275459
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI 10.1007/BF01399504
- A. A. du Plessis and C. T. C. Wall, Singular hypersurfaces, versality, and Gorenstein algebras, J. Algebraic Geom. 9 (2000), no. 2, 309–322. MR 1735775
- F. Severi, Vorlesungen über Algebraische Geometrie (Anhang F), Leipzig, Teubner, 1921.
- Eugenii Shustin, Real plane algebraic curves with prescribed singularities, Topology 32 (1993), no. 4, 845–856. MR 1241875, DOI 10.1016/0040-9383(93)90053-X
- Eugenii Shustin, Geometry of equisingular families of plane algebraic curves, J. Algebraic Geom. 5 (1996), no. 2, 209–234. MR 1374714
- E. Shustin, Lower deformations of isolated hypersurface singularities, Algebra i Analiz 11 (1999), no. 5, 221–249; English transl., St. Petersburg Math. J. 11 (2000), no. 5, 883–908. MR 1734355
- B. L. van der Waerden, Einführung in die algebraische Geometrie, Die Grundlehren der mathematischen Wissenschaften, Band 51, Springer-Verlag, Berlin-New York, 1973 (German). Zweite Auflage. MR 0344245
- Jonathan M. Wahl, Equisingular deformations of plane algebroid curves, Trans. Amer. Math. Soc. 193 (1974), 143–170. MR 419439, DOI 10.1090/S0002-9947-1974-0419439-2
- Geng Xu, Curves in $\textbf {P}^2$ and symplectic packings, Math. Ann. 299 (1994), no. 4, 609–613. MR 1286887, DOI 10.1007/BF01459801
- Geng Xu, Ample line bundles on smooth surfaces, J. Reine Angew. Math. 469 (1995), 199–209. MR 1363830, DOI 10.1515/crll.1995.469.199
Bibliographic Information
- Eugenii Shustin
- Affiliation: School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
- MR Author ID: 193452
- Email: shustin@post.tau.ac.il
- Received by editor(s): July 5, 2002
- Published electronically: August 21, 2003
- Additional Notes: The author was partially supported by Grant No. G-616-15.6/99 of the German-Israeli Foundation for Research and Development and by the Hermann-Minkowski Minerva Center for Geometry at Tel Aviv University. This work was completed during the author’s RiP stay at the Mathematisches Forschunsinstitut Oberwolfach.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 953-985
- MSC (2000): Primary 14F17, 14H20; Secondary 58K05
- DOI: https://doi.org/10.1090/S0002-9947-03-03409-3
- MathSciNet review: 1984463