Complete hyperelliptic integrals of the first kind and their non-oscillation
HTML articles powered by AMS MathViewer
- by Lubomir Gavrilov and Iliya D. Iliev
- Trans. Amer. Math. Soc. 356 (2004), 1185-1207
- DOI: https://doi.org/10.1090/S0002-9947-03-03432-9
- Published electronically: September 22, 2003
- PDF | Request permission
Abstract:
Let $P(x)$ be a real polynomial of degree $2g+1$, $H=y^2+P(x)$ and $\delta (h)$ be an oval contained in the level set $\{H=h\}$. We study complete Abelian integrals of the form \[ I(h)=\int _{\delta (h)} \frac {(\alpha _0+\alpha _1 x+\ldots + \alpha _{g-1}x^{g-1})dx}{y}, \;\;h\in \Sigma , \] where $\alpha _i$ are real and $\Sigma \subset \mathbb {R}$ is a maximal open interval on which a continuous family of ovals $\{\delta (h)\}$ exists. We show that the $g$-dimensional real vector space of these integrals is not Chebyshev in general: for any $g>1$, there are hyperelliptic Hamiltonians $H$ and continuous families of ovals $\delta (h)\subset \{H=h\}$, $h\in \Sigma$, such that the Abelian integral $I(h)$ can have at least $[\frac 32g]-1$ zeros in $\Sigma$. Our main result is Theorem 1 in which we show that when $g=2$, exceptional families of ovals $\{\delta (h)\}$ exist, such that the corresponding vector space is still Chebyshev.References
- Norbert A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I, Math. Ann. 213 (1975), 1–32 (French). MR 377108, DOI 10.1007/BF01883883
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- V.I. Arnold, Yu.S. Il’yashenko, Ordinary Differential Equations, in: Dynamical Systems I, Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988.
- V. I. Arnol′d, Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]. MR 947141, DOI 10.1007/978-1-4612-1037-5
- Vladimir I. Arnol′d, Sur quelques problèmes de la théorie des systèmes dynamiques, Topol. Methods Nonlinear Anal. 4 (1994), no. 2, 209–225 (French). MR 1350971, DOI 10.12775/TMNA.1994.027
- V. I. Arnol′d, M. I. Vishik, Yu. S. Il′yashenko, A. S. Kalashnikov, V. A. Kondrat′ev, S. N. Kruzhkov, E. M. Landis, V. M. Millionshchikov, O. A. Oleĭnik, A. F. Filippov, and M. A. Shubin, Some unsolved problems in the theory of differential equations and mathematical physics, Uspekhi Mat. Nauk 44 (1989), no. 4(268), 191–202 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 4, 157–171. MR 1023106, DOI 10.1070/RM1989v044n04ABEH002139
- V. I. Arnol′d, Ten problems, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 1–8. MR 1089668
- Egbert Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103–161 (German, with English summary). MR 267607, DOI 10.1007/BF01155695
- Alexandru Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992. MR 1194180, DOI 10.1007/978-1-4612-4404-2
- Armengol Gasull, Weigu Li, Jaume Llibre, and Zhifen Zhang, Chebyshev property of complete elliptic integrals and its application to Abelian integrals, Pacific J. Math. 202 (2002), no. 2, 341–361. MR 1887769, DOI 10.2140/pjm.2002.202.341
- Lubomir Gavrilov, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity 10 (1997), no. 2, 433–448. MR 1438261, DOI 10.1088/0951-7715/10/2/008
- Lubomir Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), no. 8, 571–584. MR 1668534, DOI 10.1016/S0007-4497(99)80004-9
- Lubomir Gavrilov, Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 611–652 (English, with English and French summaries). MR 1697374, DOI 10.5802/aif.1684
- Lubomir Gavrilov, Nonoscillation of elliptic integrals related to cubic polynomials with symmetry of order three, Bull. London Math. Soc. 30 (1998), no. 3, 267–273. MR 1608110, DOI 10.1112/S0024609397004244
- Lubomir Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), no. 3, 449–497. MR 1817642, DOI 10.1007/PL00005798
- A. B. Givental′, Sturm’s theorem for hyperelliptic integrals, Algebra i Analiz 1 (1989), no. 5, 95–102 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1157–1163. MR 1036839
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- David Hilbert, Gesammelte Abhandlungen. Band I: Zahlentheorie, Springer-Verlag, Berlin-New York, 1970 (German). Zweite Auflage. MR 0263598, DOI 10.1007/978-3-662-25726-5
- Emil Horozov and Iliya D. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity 11 (1998), no. 6, 1521–1537. MR 1660361, DOI 10.1088/0951-7715/11/6/006
- D. Novikov and S. Yakovenko, Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 55–65. MR 1679454, DOI 10.1090/S1079-6762-99-00061-X
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089, DOI 10.1007/BF03046994
- L.S. Pontryagin, On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz. 4 (1934), 234–238 (Russian).
- Robert Roussarie, Bifurcation of planar vector fields and Hilbert’s sixteenth problem, Progress in Mathematics, vol. 164, Birkhäuser Verlag, Basel, 1998. MR 1628014, DOI 10.1007/978-3-0348-8798-4
Bibliographic Information
- Lubomir Gavrilov
- Affiliation: Laboratoire Emile Picard, CNRS UMR 5580, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
- MR Author ID: 72040
- Email: l.gavrilov@picard.ups-tlse.fr
- Iliya D. Iliev
- Affiliation: Institute of Mathematics, Bulgarian Academy of Sciences, P.O. Box 373, 1090 Sofia, Bulgaria
- Email: iliya@math.bas.bg
- Received by editor(s): December 18, 2002
- Published electronically: September 22, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1185-1207
- MSC (2000): Primary 34C08; Secondary 14D05, 14K20, 34C07
- DOI: https://doi.org/10.1090/S0002-9947-03-03432-9
- MathSciNet review: 2021617