Low-degree points on Hurwitz-Klein curves
HTML articles powered by AMS MathViewer
- by Pavlos Tzermias
- Trans. Amer. Math. Soc. 356 (2004), 939-951
- DOI: https://doi.org/10.1090/S0002-9947-03-03454-8
- Published electronically: October 8, 2003
- PDF | Request permission
Abstract:
We investigate low-degree points on the Fermat curve of degree 13, the Snyder quintic curve and the Klein quartic curve. We compute all quadratic points on these curves and use Coleman’s effective Chabauty method to obtain bounds for the number of cubic points on each of the former two curves.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. MR 808103, DOI 10.1215/S0012-7094-85-05240-8
- Robert F. Coleman, Torsion points on abelian étale coverings of $\textbf {P}^1-\{0,1,\infty \}$, Trans. Amer. Math. Soc. 311 (1989), no. 1, 185–208. MR 974774, DOI 10.1090/S0002-9947-1989-0974774-5
- M. Coppens: A study of the schemes $W_{e}^{1}$ of smooth plane curves, in Proc. 1st Belgian-Spanish Week on Algebra and Geometry, R.U.C.A (1988), 29-63.
- Olivier Debarre and Matthew J. Klassen, Points of low degree on smooth plane curves, J. Reine Angew. Math. 446 (1994), 81–87. MR 1256148
- D. K. Faddeev, The group of divisor classes on some algebraic curves, Soviet Math. Dokl. 2 (1961), 67–69. MR 0130869
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- Benedict H. Gross and David E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), no. 3, 201–224. MR 491708, DOI 10.1007/BF01403161
- A. Hurwitz: Über die diophantische Gleichung $x^3 y +y^3 +x =0$, Math. Ann. 65 (1908), 428-430.
- Matthew Klassen and Pavlos Tzermias, Algebraic points of low degree on the Fermat quintic, Acta Arith. 82 (1997), no. 4, 393–401. MR 1483691, DOI 10.4064/aa-82-4-393-401
- F. Klein: Über die Tranformation siebenter Ordhang der elliptischen Funktionen, Gesammelte Math. Abhandlungen III 84, Springer, Berlin, 1923.
- Neal Koblitz and David Rohrlich, Simple factors in the Jacobian of a Fermat curve, Canadian J. Math. 30 (1978), no. 6, 1183–1205. MR 511556, DOI 10.4153/CJM-1978-099-6
- S. Lefschetz, Selected papers, Chelsea Publishing Co., Bronx, N.Y., 1971. MR 0299447
- Chong-Hai Lim, The Jacobian of a cyclic quotient of a Fermat curve, Nagoya Math. J. 125 (1992), 73–92. MR 1156904, DOI 10.1017/S0027763000003901
- William G. McCallum, On the Shafarevich-Tate group of the Jacobian of a quotient of the Fermat curve, Invent. Math. 93 (1988), no. 3, 637–666. MR 952286, DOI 10.1007/BF01410203
- Despina T. Prapavessi, On the Jacobian of the Klein curve, Proc. Amer. Math. Soc. 122 (1994), no. 4, 971–978. MR 1212286, DOI 10.1090/S0002-9939-1994-1212286-1
- P. Ribenboim: Homework!, Proc. 5th Conf. Canad. Number Th. Assoc., Ottawa (1996), 391-392, Amer. Math. Soc., Providence (1999).
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI 10.2307/2118560
- Pavlos Tzermias, Algebraic points of low degree on the Fermat curve of degree seven, Manuscripta Math. 97 (1998), no. 4, 483–488. MR 1660144, DOI 10.1007/s002290050116
- P. Tzermias: Parametrization of low-degree points on a Fermat curve, submitted for publication.
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Pavlos Tzermias
- Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300
- Email: tzermias@math.utk.edu
- Received by editor(s): January 31, 2001
- Received by editor(s) in revised form: August 1, 2001, and May 31, 2002
- Published electronically: October 8, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 939-951
- MSC (2000): Primary 11G30, 14H25; Secondary 11G10, 14G05
- DOI: https://doi.org/10.1090/S0002-9947-03-03454-8
- MathSciNet review: 1984462