Random gaps under CH
HTML articles powered by AMS MathViewer
- by James Hirschorn
- Trans. Amer. Math. Soc. 356 (2004), 1281-1290
- DOI: https://doi.org/10.1090/S0002-9947-03-03380-4
- Published electronically: November 25, 2003
- PDF | Request permission
Abstract:
It is proved that if the Continuum Hypothesis is true, then one random real always produces a destructible $(\omega _1,\omega _1)$ gap.References
- Uri Abraham and Stevo Todorčević, Partition properties of $\omega _1$ compatible with CH, Fund. Math. 152 (1997), no. 2, 165–181. MR 1441232, DOI 10.4064/fm-152-2-165-181
- Alan Dow, More set-theory for topologists, Topology Appl. 64 (1995), no. 3, 243–300. MR 1342520, DOI 10.1016/0166-8641(95)00034-E
- Felix Hausdorff, Summen $\aleph _1$ von Mengen, Fund. Math. 26 (1936), 241–255.
- James Hirschorn, Random trees under CH, preprint, 2000.
- James Hirschorn, Towers of measurable functions, Fund. Math. 164 (2000), no. 2, 165–192. MR 1784706, DOI 10.4064/fm-164-2-165-192
- James Hirschorn, Summable gaps, Ann. Pure Appl. Logic 120 (2003), no. 1–3, 1–63.
- James Hirschorn, Random gaps, preprint, October 2003.
- Thomas Jech, Set theory, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1997. MR 1492987, DOI 10.1007/978-3-662-22400-7
- Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994. Large cardinals in set theory from their beginnings. MR 1321144
- Kenneth Kunen, $(\kappa ,\lambda ^*)$ gaps under MA, handwritten note, August 1976.
- Kenneth Kunen, Some points in $\beta N$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 385–398. MR 427070, DOI 10.1017/S0305004100053032
- Richard Laver, Linear orders in $(\omega )^{\omega }$ under eventual dominance, Logic Colloquium ’78 (Mons, 1978) Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 299–302. MR 567675
- Marion Scheepers, Gaps in $\omega ^\omega$, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 439–561. MR 1234288
- Robert M. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 0290961
- S. Todorchevich and I. Farah, Some applications of the method of forcing, Yenisei Series in Pure and Applied Mathematics, Yenisei, Moscow; Lycée, Troitsk, 1995. MR 1486583
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
- Stevo Todorčević, A dichotomy for P-ideals of countable sets, Fund. Math. 166 (2000), no. 3, 251–267. MR 1809418, DOI 10.4064/fm-166-3-251-267
- W. Hugh Woodin, Discontinuous homomorphisms of $C( \Omega )$ and set theory, Ph.D. thesis, University of California, Berkeley, 1984.
Bibliographic Information
- James Hirschorn
- Affiliation: Department of Mathematics, University of Helsinki, Helsinki, Finland
- Address at time of publication: Centre de Recerca Matemàtica, Apartat 50, E-08193 Bellaterra, Spain
- MR Author ID: 633758
- Email: jhirschorn@crm.es, James.Hirschorn@logic.univie.ac.at
- Received by editor(s): October 1, 2001
- Published electronically: November 25, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1281-1290
- MSC (2000): Primary 03E05; Secondary 03E40, 03E50, 28E15
- DOI: https://doi.org/10.1090/S0002-9947-03-03380-4
- MathSciNet review: 2034309