The geometry of analytic varieties satisfying the local Phragmén-Lindelöf condition and a geometric characterization of the partial differential operators that are surjective on $\mathcal \{A\}(\mathbb \{R\}^4)$
HTML articles powered by AMS MathViewer
- by Rüdiger W. Braun, Reinhold Meise and B. A. Taylor
- Trans. Amer. Math. Soc. 356 (2004), 1315-1383
- DOI: https://doi.org/10.1090/S0002-9947-03-03448-2
- Published electronically: October 21, 2003
- PDF | Request permission
Abstract:
The local Phragmén-Lindelöf condition for analytic subvarieties of $\mathbb {C}^n$ at real points plays a crucial role in complex analysis and in the theory of constant coefficient partial differential operators, as Hörmander has shown. Here, necessary geometric conditions for this Phragmén-Lindelöf condition are derived. They are shown to be sufficient in the case of curves in arbitrary dimension and of surfaces in $\mathbb {C}^3$. The latter result leads to a geometric characterization of those constant coefficient partial differential operators which are surjective on the space of all real analytic functions on $\mathbb {R}^4$.References
- Karl Gustav Andersson, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat. 8 (1971), 277–302. MR 299938, DOI 10.1007/BF02589579
- A. Andreotti and M. Nacinovich, Analytic convexity and the principle of Phragmén-Lindelöf, Scuola Normale Superiore, Pisa, 1980. Pubblicazioni della Classe di Scienze: Quaderni. [Publications of the Science Department: Monographs]. MR 617737
- Bochnak, J., Coste, M., and Roy, M.-F.: Géometrie algébrique réelle, Ergebnisse Math. Grenzgebiete, 3. Folge, Band 12, Springer, Berlin 1987.
- C. Boiti and M. Nacinovich, The overdetermined Cauchy problem, Ann. Inst. Fourier (Grenoble) 47 (1997), no. 1, 155–199 (English, with English and French summaries). MR 1437183
- Rüdiger W. Braun, Hörmander’s Phragmén-Lindelöf principle and irreducible singularities of codimension $1$, Boll. Un. Mat. Ital. A (7) 6 (1992), no. 3, 339–348 (English, with Italian summary). MR 1196128
- Rüdiger W. Braun, The surjectivity of a constant coefficient homogeneous differential operator on the real analytic functions and the geometry of its symbol, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 1, 223–249 (English, with English and French summaries). MR 1324131
- Rüdiger W. Braun, Reinhold Meise, and B. A. Taylor, Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions, Math. Z. 232 (1999), no. 1, 103–135. MR 1714282, DOI 10.1007/PL00004756
- Braun, R.W., Meise, R., Taylor, B.A.: Local radial Phragmén-Lindelöf estimates for plurisubharmonic functions on analytic varieties, Proc. Amer. Math. Soc. 131 (2003), 2423-2433.
- Braun, R.W., Meise, R., Taylor, B.A.: Higher order tangents to analytic varieties along curves, Canad. J. Math. 55 (2003), 64-90.
- Rüdiger W. Braun, Reinhold Meise, and B. A. Taylor, Surjectivity of constant coefficient partial differential operators on $\scr A(\Bbb R^4)$ and Whitney’s $C_4$-cone, Bull. Soc. Roy. Sci. Liège 70 (2001), no. 4-6, 195–206 (2002). Hommage à Pascal Laubin. MR 1904054
- Braun, R.W., Meise, R., Taylor, B.A.: The algebraic surfaces on which the classical Phragmén-Lindelöf theorem holds, manuscript.
- R. W. Braun, R. Meise, and D. Vogt, Characterization of the linear partial differential operators with constant coefficients which are surjective on nonquasianalytic classes of Roumieu type on $\textbf {R}^N$, Math. Nachr. 168 (1994), 19–54. MR 1282630, DOI 10.1002/mana.19941680103
- Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99 (French). MR 94830
- E. M. Chirka, Complex analytic sets, Mathematics and its Applications (Soviet Series), vol. 46, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by R. A. M. Hoksbergen. MR 1111477, DOI 10.1007/978-94-009-2366-9
- U. Franken and R. Meise, Extension and lacunas of solutions of linear partial differential equations, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 429–464 (English, with English and French summaries). MR 1393521
- Uwe Franken and Reinhold Meise, Extension and lacunas of solutions of linear partial differential equations on ultradifferentiable functions of Beurling type, Structure of solutions of differential equations (Katata/Kyoto, 1995) World Sci. Publ., River Edge, NJ, 1996, pp. 103–127. MR 1445335
- Lars Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151–182. MR 336041, DOI 10.1007/BF01390194
- Kaneko, A.: Hartogs type extension theorem of real analytic solutions of linear partial differential equations with constant coefficients, in Advances in the Theory of Fréchet Spaces, T. Terzioğlu (Ed.) NATO ASI Series C, Vol. 289 (Kluwer), 1989, 63-72.
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Michael Langenbruch, Surjective partial differential operators on real analytic functions defined on open convex sets, Manuscripta Math. 103 (2000), no. 2, 241–263. MR 1796318, DOI 10.1007/PL00005858
- Langenbruch, M.: Characterization of surjective partial differential operators on spaces of real analytic functions, preprint.
- Reinhold Meise and B. A. Taylor, Phragmén-Lindelöf conditions for graph varieties, Results Math. 36 (1999), no. 1-2, 121–148. MR 1706532, DOI 10.1007/BF03322107
- R. Meise, B. A. Taylor, and D. Vogt, Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 3, 619–655 (English, with French summary). MR 1091835
- R. Meise, B. A. Taylor, and D. Vogt, Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z. 219 (1995), no. 4, 515–537. MR 1343660, DOI 10.1007/BF02572379
- Reinhold Meise, B. Alan Taylor, and Dietmar Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213–242. MR 1397674, DOI 10.1002/mana.3211800110
- R. Meise, B. A. Taylor, and D. Vogt, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 1–39. MR 1458816, DOI 10.1090/S0894-0347-98-00247-1
- Siegfried Momm, On the dependence of analytic solutions of partial differential equations on the right-hand side, Trans. Amer. Math. Soc. 345 (1994), no. 2, 729–752. MR 1254192, DOI 10.1090/S0002-9947-1994-1254192-7
- R. Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften, Band 46, Springer-Verlag, Berlin-New York, 1974 (German). Zweite Auflage; Reprint. MR 0344426
- V. P. Palamodov, A criterion for splitness of differential complexes with constant coefficients, Geometrical and algebraical aspects in several complex variables (Cetraro, 1989) Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 265–291. MR 1222219
- Józef Siciak, Extremal plurisubharmonic functions in $\textbf {C}^{n}$, Ann. Polon. Math. 39 (1981), 175–211. MR 617459, DOI 10.4064/ap-39-1-175-211
- John Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241–259. MR 324068, DOI 10.1090/S0002-9947-1972-0324068-3
- Hassler Whitney, Complex analytic varieties, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0387634
- Giuseppe Zampieri, Propagation of singularity and existence of real analytic solutions of locally hyperbolic equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 373–390. MR 763427
- Giuseppe Zampieri, An application of the fundamental principle of Ehrenpreis to the existence of global Gevrey solutions of linear differential equations, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 2, 361–392 (English, with Italian summary). MR 860634
- Oscar Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507–536. MR 177985, DOI 10.2307/2373019
- Ahmed Zériahi, Fonction de Green pluricomplexe à pôle à l’infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), no. 1, 89–126 (French). MR 1143476, DOI 10.7146/math.scand.a-12371
Bibliographic Information
- Rüdiger W. Braun
- Affiliation: Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Email: Ruediger.Braun@uni-duesseldorf.de
- Reinhold Meise
- Affiliation: Mathematisches Institut, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Email: meise@cs.uni-duesseldorf.de
- B. A. Taylor
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: taylor@umich.edu
- Received by editor(s): July 12, 2002
- Published electronically: October 21, 2003
- Additional Notes: The authors gratefully acknowledge support of DAAD and NSF under the program “Projektbezogene Förderung des Wissenschaftleraustausch mit den USA in Zusammenarbeit mit der National Science Foundation” and of the Volkswagen-Stiftung (RiP-program in Oberwolfach). The research of the third-named author was supported in part by the National Science Foundation under grant number DMS 0070725.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1315-1383
- MSC (2000): Primary 32C25; Secondary 32U05, 35E10
- DOI: https://doi.org/10.1090/S0002-9947-03-03448-2
- MathSciNet review: 2034311