Analytic -adic cell decomposition and integrals
Author:
Raf Cluckers
Journal:
Trans. Amer. Math. Soc. 356 (2004), 1489-1499
MSC (2000):
Primary 11S80, 32P05, 32B20; Secondary 03C10, 03C98, 11U09, 11S40
DOI:
https://doi.org/10.1090/S0002-9947-03-03458-5
Published electronically:
October 29, 2003
MathSciNet review:
2034315
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove a conjecture of Denef on parameterized -adic analytic integrals using an analytic cell decomposition theorem, which we also prove in this paper. This cell decomposition theorem describes piecewise the valuation of analytic functions (and more generally of subanalytic functions), the pieces being geometrically simple sets, called cells. We also classify subanalytic sets up to subanalytic bijection.
- 1. N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles, No. 1333, Hermann, Paris, 1967 (French). MR 0219078
- 2. Raf Cluckers, Classification of semi-algebraic 𝑝-adic sets up to semi-algebraic bijection, J. Reine Angew. Math. 540 (2001), 105–114. MR 1868600, https://doi.org/10.1515/crll.2001.081
- 3. Raf Cluckers and Deirdre Haskell, Grothendieck rings of ℤ-valued fields, Bull. Symbolic Logic 7 (2001), no. 2, 262–269. MR 1839548
- 4. J. Denef, The rationality of the Poincaré series associated to the 𝑝-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, https://doi.org/10.1007/BF01389133
- 5.
-, On the evaluation of certain
-adic integrals, Théorie des nombres, Sémin. Delange-Pisot-Poitou 1983-84, vol. 59, 1985, pp. 25-47.
- 6. Jan Denef, 𝑝-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154–166. MR 850632, https://doi.org/10.1515/crll.1986.369.154
- 7. J. Denef, Multiplicity of the poles of the Poincaré series of a 𝑝-adic subanalytic set, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 43, 8. MR 993136
- 8. Jan Denef, Arithmetic and geometric applications of quantifier elimination for valued fields, Model theory, algebra, and geometry, Math. Sci. Res. Inst. Publ., vol. 39, Cambridge Univ. Press, Cambridge, 2000, pp. 173–198. MR 1773707, https://doi.org/10.2977/prims/1145476152
- 9. J. Denef and L. van den Dries, 𝑝-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, https://doi.org/10.2307/1971463
- 10. Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, https://doi.org/10.1007/s002220050284
- 11. Jan Denef and François Loeser, Definable sets, motives and 𝑝-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, https://doi.org/10.1090/S0894-0347-00-00360-X
- 12. Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
- 13. Lou van den Dries, Deirdre Haskell, and Dugald Macpherson, One-dimensional 𝑝-adic subanalytic sets, J. London Math. Soc. (2) 59 (1999), no. 1, 1–20. MR 1688485, https://doi.org/10.1112/S0024610798006917
- 14. Marcus P. F. du Sautoy, Finitely generated groups, 𝑝-adic analytic groups and Poincaré series, Ann. of Math. (2) 137 (1993), no. 3, 639–670. MR 1217350, https://doi.org/10.2307/2946534
- 15. Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741
- 16. Jun-ichi Igusa, Complex powers and asymptotic expansions. I. Functions of certain types, J. Reine Angew. Math. 268(269) (1974), 110–130. MR 347753, https://doi.org/10.1515/crll.1974.268-269.110
- 17. Jun-ichi Igusa, Complex powers and asymptotic expansions. II. Asymptotic expansions, J. Reine Angew. Math. 278(279) (1975), 307–321. MR 404215, https://doi.org/10.1515/crll.1975.278-279.307
- 18. Jun-ichi Igusa, Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 59, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. MR 546292
- 19. Ben Lichtin, On a question of Igusa: towards a theory of several variable asymptotic expansions. I, Compositio Math. 120 (2000), no. 1, 25–82. MR 1738214, https://doi.org/10.1023/A:1001743909924
- 20. J.-M. Lion and J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 755–767 (French, with English and French summaries). MR 1644093
- 21. Leonard Lipshitz and Zachary Robinson, Rings of separated power series and quasi-affinoid geometry, Astérisque 264 (2000), vi+171 (English, with English and French summaries). MR 1758887
- 22. Nianzheng Liu, Analytic cell decomposition and the closure of 𝑝-adic semianalytic sets, J. Symbolic Logic 62 (1997), no. 1, 285–303. MR 1450524, https://doi.org/10.2307/2275742
- 23. Angus Macintyre, On definable subsets of 𝑝-adic fields, J. Symbolic Logic 41 (1976), no. 3, 605–610. MR 485335, https://doi.org/10.2307/2272038
- 24. M.-H. Mourgues, Corps p-minimaux avec fonctions de Skolem définissables, Séminaire de structures algébriques ordonnées, 1999-2000, prépublication de l'équipe de logique mathématique de Paris 7, pp. 1-8.
- 25.
A. Mylnikov,
-adic subanalytic preparation and cell decomposition theorems, Ph.D. thesis, Purdue University, 1999.
- 26. Joseph Oesterlé, Réduction modulo 𝑝ⁿ des sous-ensembles analytiques fermés de 𝑍^{𝑁}_{𝑝}, Invent. Math. 66 (1982), no. 2, 325–341 (French). MR 656627, https://doi.org/10.1007/BF01389398
- 27. Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- 28.
S. Wilcox, Topics in the model theory of
-adic numbers, Ph.D. thesis, University of Oxford, (unfinished).
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11S80, 32P05, 32B20, 03C10, 03C98, 11U09, 11S40
Retrieve articles in all journals with MSC (2000): 11S80, 32P05, 32B20, 03C10, 03C98, 11U09, 11S40
Additional Information
Raf Cluckers
Affiliation:
Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
Address at time of publication:
École Normale Supérieure, Département de Mathématiques et Applications, 45 rue d’Ulm, 75230 Paris Cedex 05, France
Email:
raf.cluckers@wis.kuleuven.ac.be
DOI:
https://doi.org/10.1090/S0002-9947-03-03458-5
Keywords:
Subanalytic $p$-adic sets,
cell decomposition,
$p$-adic integrals,
Igusa's local zeta functions
Received by editor(s):
August 15, 2002
Published electronically:
October 29, 2003
Additional Notes:
The author is a Research Assistant of the Fund for Scientific Research – Flanders (Belgium)(F.W.O.)
Article copyright:
© Copyright 2003
American Mathematical Society