Analytic $p$-adic cell decomposition and integrals
HTML articles powered by AMS MathViewer
- by Raf Cluckers
- Trans. Amer. Math. Soc. 356 (2004), 1489-1499
- DOI: https://doi.org/10.1090/S0002-9947-03-03458-5
- Published electronically: October 29, 2003
- PDF | Request permission
Abstract:
We prove a conjecture of Denef on parameterized $p$-adic analytic integrals using an analytic cell decomposition theorem, which we also prove in this paper. This cell decomposition theorem describes piecewise the valuation of analytic functions (and more generally of subanalytic functions), the pieces being geometrically simple sets, called cells. We also classify subanalytic sets up to subanalytic bijection.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1333, Hermann, Paris, 1967 (French). MR 0219078
- Raf Cluckers, Classification of semi-algebraic $p$-adic sets up to semi-algebraic bijection, J. Reine Angew. Math. 540 (2001), 105–114. MR 1868600, DOI 10.1515/crll.2001.081
- Raf Cluckers and Deirdre Haskell, Grothendieck rings of $\Bbb Z$-valued fields, Bull. Symbolic Logic 7 (2001), no. 2, 262–269. MR 1839548
- J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI 10.1007/BF01389133
- —, On the evaluation of certain $p$-adic integrals, Théorie des nombres, Sémin. Delange-Pisot-Poitou 1983–84, vol. 59, 1985, pp. 25–47.
- Jan Denef, $p$-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154–166. MR 850632, DOI 10.1515/crll.1986.369.154
- J. Denef, Multiplicity of the poles of the Poincaré series of a $p$-adic subanalytic set, Séminaire de Théorie des Nombres, 1987–1988 (Talence, 1987–1988) Univ. Bordeaux I, Talence, [1988?], pp. Exp. No. 43, 8. MR 993136
- Jan Denef, Arithmetic and geometric applications of quantifier elimination for valued fields, Model theory, algebra, and geometry, Math. Sci. Res. Inst. Publ., vol. 39, Cambridge Univ. Press, Cambridge, 2000, pp. 173–198. MR 1773707, DOI 10.2977/prims/1145476152
- J. Denef and L. van den Dries, $p$-adic and real subanalytic sets, Ann. of Math. (2) 128 (1988), no. 1, 79–138. MR 951508, DOI 10.2307/1971463
- Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, DOI 10.1007/s002220050284
- Jan Denef and François Loeser, Definable sets, motives and $p$-adic integrals, J. Amer. Math. Soc. 14 (2001), no. 2, 429–469. MR 1815218, DOI 10.1090/S0894-0347-00-00360-X
- Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348, DOI 10.1017/CBO9780511525919
- Lou van den Dries, Deirdre Haskell, and Dugald Macpherson, One-dimensional $p$-adic subanalytic sets, J. London Math. Soc. (2) 59 (1999), no. 1, 1–20. MR 1688485, DOI 10.1112/S0024610798006917
- Marcus P. F. du Sautoy, Finitely generated groups, $p$-adic analytic groups and Poincaré series, Ann. of Math. (2) 137 (1993), no. 3, 639–670. MR 1217350, DOI 10.2307/2946534
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Jun-ichi Igusa, Complex powers and asymptotic expansions. I. Functions of certain types, J. Reine Angew. Math. 268(269) (1974), 110–130. MR 347753, DOI 10.1515/crll.1974.268-269.110
- Jun-ichi Igusa, Complex powers and asymptotic expansions. II. Asymptotic expansions, J. Reine Angew. Math. 278(279) (1975), 307–321. MR 404215, DOI 10.1515/crll.1975.278-279.307
- Jun-ichi Igusa, Forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 59, Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978. MR 546292
- Ben Lichtin, On a question of Igusa: towards a theory of several variable asymptotic expansions. I, Compositio Math. 120 (2000), no. 1, 25–82. MR 1738214, DOI 10.1023/A:1001743909924
- J.-M. Lion and J.-P. Rolin, Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 3, 755–767 (French, with English and French summaries). MR 1644093
- Leonard Lipshitz and Zachary Robinson, Rings of separated power series and quasi-affinoid geometry, Astérisque 264 (2000), vi+171 (English, with English and French summaries). MR 1758887
- Nianzheng Liu, Analytic cell decomposition and the closure of $p$-adic semianalytic sets, J. Symbolic Logic 62 (1997), no. 1, 285–303. MR 1450524, DOI 10.2307/2275742
- Angus Macintyre, On definable subsets of $p$-adic fields, J. Symbolic Logic 41 (1976), no. 3, 605–610. MR 485335, DOI 10.2307/2272038
- M.-H. Mourgues, Corps p-minimaux avec fonctions de Skolem définissables, Séminaire de structures algébriques ordonnées, 1999–2000, prépublication de l’équipe de logique mathématique de Paris 7, pp. 1–8.
- A. Mylnikov, $p$-adic subanalytic preparation and cell decomposition theorems, Ph.D. thesis, Purdue University, 1999.
- Joseph Oesterlé, Réduction modulo $p^{n}$ des sous-ensembles analytiques fermés de $\textbf {Z}^{N}_{p}$, Invent. Math. 66 (1982), no. 2, 325–341 (French). MR 656627, DOI 10.1007/BF01389398
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- S. Wilcox, Topics in the model theory of $p$-adic numbers, Ph.D. thesis, University of Oxford, (unfinished).
Bibliographic Information
- Raf Cluckers
- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Address at time of publication: École Normale Supérieure, Département de Mathématiques et Applications, 45 rue d’Ulm, 75230 Paris Cedex 05, France
- Email: raf.cluckers@wis.kuleuven.ac.be
- Received by editor(s): August 15, 2002
- Published electronically: October 29, 2003
- Additional Notes: The author is a Research Assistant of the Fund for Scientific Research – Flanders (Belgium)(F.W.O.)
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1489-1499
- MSC (2000): Primary 11S80, 32P05, 32B20; Secondary 03C10, 03C98, 11U09, 11S40
- DOI: https://doi.org/10.1090/S0002-9947-03-03458-5
- MathSciNet review: 2034315