On restrictions of modular spin representations of symmetric and alternating groups
HTML articles powered by AMS MathViewer
- by Alexander S. Kleshchev and Pham Huu Tiep
- Trans. Amer. Math. Soc. 356 (2004), 1971-1999
- DOI: https://doi.org/10.1090/S0002-9947-03-03364-6
- Published electronically: October 28, 2003
- PDF | Request permission
Abstract:
Let $\mathbb F$ be an algebraically closed field of characteristic $p$ and $H$ be an almost simple group or a central extension of an almost simple group. An important problem in representation theory is to classify the subgroups $G$ of $H$ and $\mathbb F H$-modules $V$ such that the restriction $V{\downarrow }_G$ is irreducible. For example, this problem is a natural part of the program of describing maximal subgroups in finite classical groups. In this paper we investigate the case of the problem where $H$ is the Schurβs double cover $\hat A_n$ or $\hat S_n$.References
- M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no.Β 3, 469β514. MR 746539, DOI 10.1007/BF01388470
- Antal Balog, Christine Bessenrodt, JΓΈrn B. Olsson, and Ken Ono, Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64 (2001), no.Β 2, 344β356. MR 1853455, DOI 10.1112/S0024610701002356
- Christine Bessenrodt, On mixed products of complex characters of the double covers of the symmetric groups, Pacific J. Math. 199 (2001), no.Β 2, 257β268. MR 1847134, DOI 10.2140/pjm.2001.199.257
- C. Bessenrodt and A. Kleshchev, On Kronecker products of complex representations of the symmetric and alternating groups, Pacific J. Math. 190 (1999), no.Β 2, 201β223. MR 1722888, DOI 10.2140/pjm.1999.190.201
- Christine Bessenrodt and Alexander S. Kleshchev, On tensor products of modular representations of symmetric groups, Bull. London Math. Soc. 32 (2000), no.Β 3, 292β296. MR 1750169, DOI 10.1112/S0024609300007098
- Christine Bessenrodt and Alexander S. Kleshchev, Irreducible tensor products over alternating groups, J. Algebra 228 (2000), no.Β 2, 536β550. MR 1764578, DOI 10.1006/jabr.2000.8284
- Jonathan Brundan and Alexander S. Kleshchev, Representations of the symmetric group which are irreducible over subgroups, J. Reine Angew. Math. 530 (2001), 145β190. MR 1807270, DOI 10.1515/crll.2001.002
- Jonathan Brundan and Alexander Kleshchev, Projective representations of symmetric groups via Sergeev duality, Math. Z. 239 (2002), no.Β 1, 27β68. MR 1879328, DOI 10.1007/s002090100282
- Jonathan Brundan and Alexander Kleshchev, Hecke-Clifford superalgebras, crystals of type $A_{2l}^{(2)}$ and modular branching rules for $\hat S_n$, Represent. Theory 5 (2001), 317β403. MR 1870595, DOI 10.1090/S1088-4165-01-00123-6
- Peter J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), no.Β 1, 1β22. MR 599634, DOI 10.1112/blms/13.1.1
- Peter J. Cameron, Peter M. Neumann, and Jan Saxl, An interchange property in finite permutation groups, Bull. London Math. Soc. 11 (1979), no.Β 2, 161β169. MR 541970, DOI 10.1112/blms/11.2.161
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Roderick Gow and Alexander Kleshchev, Connections between the representations of the symmetric group and the symplectic group in characteristic $2$, J. Algebra 221 (1999), no.Β 1, 60β89. MR 1722904, DOI 10.1006/jabr.1999.7943
- Robert M. Guralnick and Pham Huu Tiep, Low-dimensional representations of special linear groups in cross characteristics, Proc. London Math. Soc. (3) 78 (1999), no.Β 1, 116β138. MR 1658160, DOI 10.1112/S0024611599001720
- P. N. Hoffman and J. F. Humphreys, Projective representations of the symmetric groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. $Q$-functions and shifted tableaux; Oxford Science Publications. MR 1205350
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR 513828
- Jens C. Jantzen and Gary M. Seitz, On the representation theory of the symmetric groups, Proc. London Math. Soc. (3) 65 (1992), no.Β 3, 475β504. MR 1182100, DOI 10.1112/plms/s3-65.3.475
- Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
- William M. Kantor, $k$-homogeneous groups, Math. Z. 124 (1972), 261β265. MR 306296, DOI 10.1007/BF01113919
- William M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 (1985), no.Β 1, 66β74. MR 773556, DOI 10.1016/0097-3165(85)90022-6
- Peter B. Kleidman and David B. Wales, The projective characters of the symmetric groups that remain irreducible on subgroups, J. Algebra 138 (1991), no.Β 2, 440β478. MR 1102819, DOI 10.1016/0021-8693(91)90181-7
- Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
- Alexander S. Kleshchev, On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups. I, Proc. London Math. Soc. (3) 69 (1994), no.Β 3, 515β540. MR 1289862, DOI 10.1112/plms/s3-69.3.515
- A. S. Kleshchev and J. K. Sheth, Representations of the symmetric group are reducible over simply transitive subgroups, Math. Z. 235 (2000), no.Β 1, 99β109. MR 1785073, DOI 10.1007/s002090000125
- Alexander S. Kleshchev and Jagat Sheth, Representations of the alternating group which are irreducible over subgroups, Proc. London Math. Soc. (3) 84 (2002), no.Β 1, 194β212. MR 1863400, DOI 10.1112/S002461150101320X
- Martin W. Liebeck and Gary M. Seitz, On the subgroup structure of classical groups, Invent. Math. 134 (1998), no.Β 2, 427β453. MR 1650328, DOI 10.1007/s002220050270
- Donald Livingstone and Ascher Wagner, Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393β403. MR 186725, DOI 10.1007/BF01112361
- A. Phillips, Branching problems for projective representations of the symmetric and alternating groups, preprint, 2003.
- Jan Saxl, The complex characters of the symmetric groups that remain irreducible in subgroups, J. Algebra 111 (1987), no.Β 1, 210β219. MR 913206, DOI 10.1016/0021-8693(87)90251-1
- Ascher Wagner, An observation on the degrees of projective representations of the symmetric and alternating group over an arbitrary field, Arch. Math. (Basel) 29 (1977), no.Β 6, 583β589. MR 460451, DOI 10.1007/BF01220457
- David B. Wales, Some projective representations of $S_{n}$, J. Algebra 61 (1979), no.Β 1, 37β57. MR 554850, DOI 10.1016/0021-8693(79)90304-1
Bibliographic Information
- Alexander S. Kleshchev
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- MR Author ID: 268538
- Email: klesh@math.uoregon.edu
- Pham Huu Tiep
- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
- MR Author ID: 230310
- Email: tiep@math.ufl.edu
- Received by editor(s): October 30, 2002
- Received by editor(s) in revised form: April 4, 2003
- Published electronically: October 28, 2003
- Additional Notes: The authors gratefully acknowledge the support of the NSF (grants DMS-0139019 and DMS-0070647)
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1971-1999
- MSC (2000): Primary 20C20, 20C30, 20C25; Secondary 20B35, 20B20
- DOI: https://doi.org/10.1090/S0002-9947-03-03364-6
- MathSciNet review: 2031049