## On restrictions of modular spin representations of symmetric and alternating groups

HTML articles powered by AMS MathViewer

- by Alexander S. Kleshchev and Pham Huu Tiep PDF
- Trans. Amer. Math. Soc.
**356**(2004), 1971-1999 Request permission

## Abstract:

Let $\mathbb F$ be an algebraically closed field of characteristic $p$ and $H$ be an almost simple group or a central extension of an almost simple group. An important problem in representation theory is to classify the subgroups $G$ of $H$ and $\mathbb F H$-modules $V$ such that the restriction $V{\downarrow }_G$ is irreducible. For example, this problem is a natural part of the program of describing maximal subgroups in finite classical groups. In this paper we investigate the case of the problem where $H$ is the Schurβs double cover $\hat A_n$ or $\hat S_n$.## References

- M. Aschbacher,
*On the maximal subgroups of the finite classical groups*, Invent. Math.**76**(1984), no.Β 3, 469β514. MR**746539**, DOI 10.1007/BF01388470 - Antal Balog, Christine Bessenrodt, JΓΈrn B. Olsson, and Ken Ono,
*Prime power degree representations of the symmetric and alternating groups*, J. London Math. Soc. (2)**64**(2001), no.Β 2, 344β356. MR**1853455**, DOI 10.1112/S0024610701002356 - Christine Bessenrodt,
*On mixed products of complex characters of the double covers of the symmetric groups*, Pacific J. Math.**199**(2001), no.Β 2, 257β268. MR**1847134**, DOI 10.2140/pjm.2001.199.257 - C. Bessenrodt and A. Kleshchev,
*On Kronecker products of complex representations of the symmetric and alternating groups*, Pacific J. Math.**190**(1999), no.Β 2, 201β223. MR**1722888**, DOI 10.2140/pjm.1999.190.201 - Christine Bessenrodt and Alexander S. Kleshchev,
*On tensor products of modular representations of symmetric groups*, Bull. London Math. Soc.**32**(2000), no.Β 3, 292β296. MR**1750169**, DOI 10.1112/S0024609300007098 - Christine Bessenrodt and Alexander S. Kleshchev,
*Irreducible tensor products over alternating groups*, J. Algebra**228**(2000), no.Β 2, 536β550. MR**1764578**, DOI 10.1006/jabr.2000.8284 - Jonathan Brundan and Alexander S. Kleshchev,
*Representations of the symmetric group which are irreducible over subgroups*, J. Reine Angew. Math.**530**(2001), 145β190. MR**1807270**, DOI 10.1515/crll.2001.002 - Jonathan Brundan and Alexander Kleshchev,
*Projective representations of symmetric groups via Sergeev duality*, Math. Z.**239**(2002), no.Β 1, 27β68. MR**1879328**, DOI 10.1007/s002090100282 - Jonathan Brundan and Alexander Kleshchev,
*Hecke-Clifford superalgebras, crystals of type $A_{2l}^{(2)}$ and modular branching rules for $\hat S_n$*, Represent. Theory**5**(2001), 317β403. MR**1870595**, DOI 10.1090/S1088-4165-01-00123-6 - Peter J. Cameron,
*Finite permutation groups and finite simple groups*, Bull. London Math. Soc.**13**(1981), no.Β 1, 1β22. MR**599634**, DOI 10.1112/blms/13.1.1 - Peter J. Cameron, Peter M. Neumann, and Jan Saxl,
*An interchange property in finite permutation groups*, Bull. London Math. Soc.**11**(1979), no.Β 2, 161β169. MR**541970**, DOI 10.1112/blms/11.2.161 - J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,
*$\Bbb {ATLAS}$ of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219** - Roderick Gow and Alexander Kleshchev,
*Connections between the representations of the symmetric group and the symplectic group in characteristic $2$*, J. Algebra**221**(1999), no.Β 1, 60β89. MR**1722904**, DOI 10.1006/jabr.1999.7943 - Robert M. Guralnick and Pham Huu Tiep,
*Low-dimensional representations of special linear groups in cross characteristics*, Proc. London Math. Soc. (3)**78**(1999), no.Β 1, 116β138. MR**1658160**, DOI 10.1112/S0024611599001720 - P. N. Hoffman and J. F. Humphreys,
*Projective representations of the symmetric groups*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. $Q$-functions and shifted tableaux; Oxford Science Publications. MR**1205350** - I. Martin Isaacs,
*Character theory of finite groups*, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR**0460423** - G. D. James,
*The representation theory of the symmetric groups*, Lecture Notes in Mathematics, vol. 682, Springer, Berlin, 1978. MR**513828** - Jens C. Jantzen and Gary M. Seitz,
*On the representation theory of the symmetric groups*, Proc. London Math. Soc. (3)**65**(1992), no.Β 3, 475β504. MR**1182100**, DOI 10.1112/plms/s3-65.3.475 - Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson,
*An atlas of Brauer characters*, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR**1367961** - William M. Kantor,
*$k$-homogeneous groups*, Math. Z.**124**(1972), 261β265. MR**306296**, DOI 10.1007/BF01113919 - William M. Kantor,
*Homogeneous designs and geometric lattices*, J. Combin. Theory Ser. A**38**(1985), no.Β 1, 66β74. MR**773556**, DOI 10.1016/0097-3165(85)90022-6 - Peter B. Kleidman and David B. Wales,
*The projective characters of the symmetric groups that remain irreducible on subgroups*, J. Algebra**138**(1991), no.Β 2, 440β478. MR**1102819**, DOI 10.1016/0021-8693(91)90181-7 - Peter Kleidman and Martin Liebeck,
*The subgroup structure of the finite classical groups*, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR**1057341**, DOI 10.1017/CBO9780511629235 - Alexander S. Kleshchev,
*On restrictions of irreducible modular representations of semisimple algebraic groups and symmetric groups to some natural subgroups. I*, Proc. London Math. Soc. (3)**69**(1994), no.Β 3, 515β540. MR**1289862**, DOI 10.1112/plms/s3-69.3.515 - A. S. Kleshchev and J. K. Sheth,
*Representations of the symmetric group are reducible over simply transitive subgroups*, Math. Z.**235**(2000), no.Β 1, 99β109. MR**1785073**, DOI 10.1007/s002090000125 - Alexander S. Kleshchev and Jagat Sheth,
*Representations of the alternating group which are irreducible over subgroups*, Proc. London Math. Soc. (3)**84**(2002), no.Β 1, 194β212. MR**1863400**, DOI 10.1112/S002461150101320X - Martin W. Liebeck and Gary M. Seitz,
*On the subgroup structure of classical groups*, Invent. Math.**134**(1998), no.Β 2, 427β453. MR**1650328**, DOI 10.1007/s002220050270 - Donald Livingstone and Ascher Wagner,
*Transitivity of finite permutation groups on unordered sets*, Math. Z.**90**(1965), 393β403. MR**186725**, DOI 10.1007/BF01112361 - A. Phillips, Branching problems for projective representations of the symmetric and alternating groups,
*preprint*, 2003. - Jan Saxl,
*The complex characters of the symmetric groups that remain irreducible in subgroups*, J. Algebra**111**(1987), no.Β 1, 210β219. MR**913206**, DOI 10.1016/0021-8693(87)90251-1 - Ascher Wagner,
*An observation on the degrees of projective representations of the symmetric and alternating group over an arbitrary field*, Arch. Math. (Basel)**29**(1977), no.Β 6, 583β589. MR**460451**, DOI 10.1007/BF01220457 - David B. Wales,
*Some projective representations of $S_{n}$*, J. Algebra**61**(1979), no.Β 1, 37β57. MR**554850**, DOI 10.1016/0021-8693(79)90304-1

## Additional Information

**Alexander S. Kleshchev**- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- MR Author ID: 268538
- Email: klesh@math.uoregon.edu
**Pham Huu Tiep**- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611
- MR Author ID: 230310
- Email: tiep@math.ufl.edu
- Received by editor(s): October 30, 2002
- Received by editor(s) in revised form: April 4, 2003
- Published electronically: October 28, 2003
- Additional Notes: The authors gratefully acknowledge the support of the NSF (grants DMS-0139019 and DMS-0070647)
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 1971-1999 - MSC (2000): Primary 20C20, 20C30, 20C25; Secondary 20B35, 20B20
- DOI: https://doi.org/10.1090/S0002-9947-03-03364-6
- MathSciNet review: 2031049