## Semilattices of finitely generated ideals of exchange rings with finite stable rank

HTML articles powered by AMS MathViewer

- by F. Wehrung PDF
- Trans. Amer. Math. Soc.
**356**(2004), 1957-1970 Request permission

## Abstract:

We find a distributive $(\vee ,0,1)$-semilattice $S_{\omega _1}$ of size $\aleph _1$ that is not isomorphic to the maximal semilattice quotient of any Riesz monoid endowed with an order-unit of finite stable rank. We thus obtain solutions to various open problems in ring theory and in lattice theory. In particular:

[—] There is no exchange ring (thus, no von Neumann regular ring and no C*-algebra of real rank zero) with finite stable rank whose semilattice of finitely generated, idempotent-generated two-sided ideals is isomorphic to $S_{\omega _1}$.

[—] There is no locally finite, modular lattice whose semilattice of finitely generated congruences is isomorphic to $S_{\omega _1}$.

These results are established by constructing an infinitary statement, denoted here by $\mathrm {URP_{sr}}$, that holds in the maximal semilattice quotient of every Riesz monoid endowed with an order-unit of finite stable rank, but not in the semilattice $S_{\omega _1}$.

## References

- K. V. Adaricheva and V. A. Gorbunov,
*On lower bounded lattices*, Algebra Universalis**46**(2001), no. 1-2, 203–213. The Viktor Aleksandrovich Gorbunov memorial issue. MR**1835794**, DOI 10.1007/PL00000337 - Pere Ara,
*Stability properties of exchange rings*, International Symposium on Ring Theory (Kyongju, 1999) Trends Math., Birkhäuser Boston, Boston, MA, 2001, pp. 23–42. MR**1851191** - P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo,
*Separative cancellation for projective modules over exchange rings*, Israel J. Math.**105**(1998), 105–137. MR**1639739**, DOI 10.1007/BF02780325 - G. M. Bergman,
*Von Neumann regular rings with tailor-made ideal lattices*, Unpublished note (26 October 1986). - Alan Day,
*Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices*, Canadian J. Math.**31**(1979), no. 1, 69–78. MR**518707**, DOI 10.4153/CJM-1979-008-x - Edward G. Effros, David E. Handelman, and Chao Liang Shen,
*Dimension groups and their affine representations*, Amer. J. Math.**102**(1980), no. 2, 385–407. MR**564479**, DOI 10.2307/2374244 - Ralph Freese, Jaroslav Ježek, and J. B. Nation,
*Free lattices*, Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI, 1995. MR**1319815**, DOI 10.1090/surv/042 - K. R. Goodearl,
*von Neumann regular rings*, 2nd ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. MR**1150975** - K. R. Goodearl,
*Partially ordered abelian groups with interpolation*, Mathematical Surveys and Monographs, vol. 20, American Mathematical Society, Providence, RI, 1986. MR**845783**, DOI 10.1090/surv/020 - K. R. Goodearl and D. E. Handelman,
*Tensor products of dimension groups and $K_0$ of unit-regular rings*, Canad. J. Math.**38**(1986), no. 3, 633–658. MR**845669**, DOI 10.4153/CJM-1986-032-0 - K. R. Goodearl and F. Wehrung,
*Representations of distributive semilattices in ideal lattices of various algebraic structures*, Algebra Universalis**45**(2001), no. 1, 71–102. MR**1809858**, DOI 10.1007/s000120050203 - George Grätzer,
*General lattice theory*, 2nd ed., Birkhäuser Verlag, Basel, 1998. New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R. Wille. MR**1670580** - George Grätzer, Harry Lakser, and Friedrich Wehrung,
*Congruence amalgamation of lattices*, Acta Sci. Math. (Szeged)**66**(2000), no. 1-2, 3–22. MR**1768850** - G. Grätzer and F. Wehrung,
*On the number of join-irreducibles in a congruence representation of a finite distributive lattice*, Algebra Universalis**49**(2003), 165–178. - Bjarni Jónsson and James E. Kiefer,
*Finite sublattices of a free lattice*, Canadian J. Math.**14**(1962), 487–497. MR**137667**, DOI 10.4153/CJM-1962-040-1 - Céline Moreira Dos Santos,
*A refinement monoid whose maximal antisymmetric quotient is not a refinement monoid*, Semigroup Forum**65**(2002), no. 2, 249–263. MR**1911728**, DOI 10.1007/s002330010104 - E. Pardo,
*Monoides de refinament i anells d’intercanvi*, Ph.D. Thesis, Universitat Autònoma de Barcelona, 1995. - P. Růžička,
*A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group*, J. Algebra**268**, no. 1 (2003), 290–300. - J. Tůma and F. Wehrung,
*Liftings of diagrams of semilattices by diagrams of dimension groups*, Proc. London Math. Soc.**87**, no. 3 (2003), 1–28. - —,
*A survey of recent results on congruence lattices of lattices*, Algebra Universalis**48**, no. 4 (2002), 439–471. - Friedrich Wehrung,
*Non-measurability properties of interpolation vector spaces*, Israel J. Math.**103**(1998), 177–206. MR**1613568**, DOI 10.1007/BF02762273 - F. Wehrung,
*The dimension monoid of a lattice*, Algebra Universalis**40**(1998), no. 3, 247–411. MR**1668068**, DOI 10.1007/s000120050091 - Friedrich Wehrung,
*A uniform refinement property for congruence lattices*, Proc. Amer. Math. Soc.**127**(1999), no. 2, 363–370. MR**1468207**, DOI 10.1090/S0002-9939-99-04558-X - Friedrich Wehrung,
*Representation of algebraic distributive lattices with $\aleph _1$ compact elements as ideal lattices of regular rings*, Publ. Mat.**44**(2000), no. 2, 419–435. MR**1800815**, DOI 10.5565/PUBLMAT_{4}4200_{0}3 - Friedrich Wehrung,
*From join-irreducibles to dimension theory for lattices with chain conditions*, J. Algebra Appl.**1**(2002), no. 2, 215–242. MR**1913085**, DOI 10.1142/S0219498802000148 - —,
*Forcing extensions of partial lattices*, J. Algebra**262**, no. 1 (2003), 127–193.

## Additional Information

**F. Wehrung**- Affiliation: Département de Mathématiques, CNRS, UMR 6139, Université de Caen, Campus II, B.P. 5186, 14032 Caen Cedex, France
- MR Author ID: 242737
- Email: wehrung@math.unicaen.fr
- Received by editor(s): January 3, 2003
- Received by editor(s) in revised form: April 2, 2003
- Published electronically: October 28, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 1957-1970 - MSC (2000): Primary 06A12, 20M14, 06B10; Secondary 19K14
- DOI: https://doi.org/10.1090/S0002-9947-03-03369-5
- MathSciNet review: 2031048