Varying the time-frequency lattice of Gabor frames
HTML articles powered by AMS MathViewer
- by Hans G. Feichtinger and Norbert Kaiblinger
- Trans. Amer. Math. Soc. 356 (2004), 2001-2023
- DOI: https://doi.org/10.1090/S0002-9947-03-03377-4
- Published electronically: November 12, 2003
- PDF | Request permission
Abstract:
A Gabor or Weyl-Heisenberg frame for $L^2(\mathbb {R}^d)$ is generated by time-frequency shifts of a square-integrable function, the Gabor atom, along a time-frequency lattice. The dual frame is again a Gabor frame, generated by the dual atom. In general, Gabor frames are not stable under a perturbation of the lattice constants; that is, even for arbitrarily small changes of the parameters the frame property can be lost.
In contrast, as a main result we show that this kind of stability does hold for Gabor frames generated by a Gabor atom from the modulation space $M^1(\mathbb {R}^d)$, which is a dense subspace of $L^2(\mathbb {R}^d)$. Moreover, in this case the dual atom depends continuously on the lattice constants. In fact, we prove these results for more general weighted modulation spaces. As a consequence, we obtain for Gabor atoms from the Schwartz class that the continuous dependence of the dual atom holds even in the Schwartz topology. Also, we complement these main results by corresponding statements for Gabor Riesz sequences and their biorthogonal system.
References
- Peter G. Cazassa and Ole Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543–557. Dedicated to the memory of Richard J. Duffin. MR 1491933, DOI 10.1007/BF02648883
- Peter G. Casazza, Ole Christensen, and A. J. E. M. Janssen, Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, J. Funct. Anal. 180 (2001), no. 1, 85–147. MR 1814424, DOI 10.1006/jfan.2000.3673
- Peter G. Casazza, Ole Christensen, and Mark C. Lammers, Perturbations of Weyl-Heisenberg frames, Hokkaido Math. J. 31 (2002), no. 3, 539–553. MR 1937661, DOI 10.14492/hokmj/1350911902
- Ole Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1217–1220. MR 1231031, DOI 10.1090/S0002-9939-1995-1231031-8
- Ole Christensen, Moment problems and stability results for frames with applications to irregular sampling and Gabor frames, Appl. Comput. Harmon. Anal. 3 (1996), no. 1, 82–86. MR 1374398, DOI 10.1006/acha.1996.0007
- Ole Christensen, Perturbation of frames and applications to Gabor frames, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998, pp. 193–209. MR 1601099
- Ole Christensen, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 3, 273–291. MR 1824891, DOI 10.1090/S0273-0979-01-00903-X
- Ole Christensen and Christopher Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33–47. MR 1452474, DOI 10.1002/mana.3211850104
- Ole Christensen, Chris Lennard, and Christine Lewis, Perturbation of frames for a subspace of a Hilbert space, Rocky Mountain J. Math. 30 (2000), no. 4, 1237–1249. MR 1810165, DOI 10.1216/rmjm/1021477349
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ingrid Daubechies, H. J. Landau, and Zeph Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 1 (1995), no. 4, 437–478. MR 1350701, DOI 10.1007/s00041-001-4018-3
- S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160–173. MR 1325538, DOI 10.1006/acha.1995.1012
- Hans G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), no. 4, 269–289. MR 643206, DOI 10.1007/BF01320058
- Hans G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), no. 2, 307–340. MR 1021139, DOI 10.1016/0022-1236(89)90055-4
- Hans G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2, 464–495. MR 1452000, DOI 10.1006/jfan.1996.3078
- H. G. Feichtinger and A. J. E. M. Janssen, Validity of WH-frame bound conditions depends on lattice parameters, Appl. Comput. Harmon. Anal. 8 (2000), no. 1, 104–112. MR 1734849, DOI 10.1006/acha.2000.0281
- Hans G. Feichtinger and Werner Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998, pp. 233–266. MR 1601091
- H. G. Feichtinger and K. Nowak, A first survey of Gabor multipliers, in [H. G. Feichtinger and T. Strohmer (eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003], pp. 99–128.
- Hans G. Feichtinger and Thomas Strohmer (eds.), Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 1998. Theory and applications. MR 1601119, DOI 10.1007/978-1-4612-2016-9
- H. G. Feichtinger and T. Strohmer (eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003.
- Hans G. Feichtinger and Georg Zimmermann, A Banach space of test functions for Gabor analysis, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998, pp. 123–170. MR 1601107
- J.-P. Gabardo and D. Han, Aspects of Gabor analysis and operator algebras, in [H. G. Feichtinger and T. Strohmer (eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003], pp. 129–152.
- Loukas Grafakos and Chris Lennard, Characterization of $L^p(\mathbf R^n)$ using Gabor frames, J. Fourier Anal. Appl. 7 (2001), no. 2, 101–126. MR 1817671, DOI 10.1007/BF02510419
- N. Grip and W. Sun, Remarks on [41], J. Fourier Anal. Appl. 9 (2003), no. 1, 97–100.
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717, DOI 10.1007/978-1-4612-0003-1
- Karlheinz Gröchenig and Christopher Heil, Gabor meets Littlewood-Paley: Gabor expansions in $L^p(\Bbb R^d)$, Studia Math. 146 (2001), no. 1, 15–33. MR 1827563, DOI 10.4064/sm146-1-2
- K. Gröchenig, C. Heil, and K. Okoudjou, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process. 1 (2002), no. 3, 225–260.
- Karlheinz Gröchenig and A. J. E. M. Janssen, Letter to the editor: a new criterion for Gabor frames, J. Fourier Anal. Appl. 8 (2002), no. 5, 507–512. MR 1921985, DOI 10.1007/s00041-002-0024-3
- K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc., to appear.
- Christopher E. Heil and David F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628–666. MR 1025485, DOI 10.1137/1031129
- A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), no. 4, 403–436. MR 1350700, DOI 10.1007/s00041-001-4017-4
- —, On generating tight Gabor frames at critical density, J. Fourier Anal. Appl. 9 (2003), no. 2, 175–214.
- —, Zak transforms with few zeros and the tie, in [H. G. Feichtinger and T. Strohmer (eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003], pp. 31–70.
- A. J. E. M. Janssen and Thomas Strohmer, Hyperbolic secants yield Gabor frames, Appl. Comput. Harmon. Anal. 12 (2002), no. 2, 259–267. MR 1884237, DOI 10.1006/acha.2001.0376
- K. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc., to appear.
- Amos Ron and Zuowei Shen, Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbf R^d)$, Duke Math. J. 89 (1997), no. 2, 237–282. MR 1460623, DOI 10.1215/S0012-7094-97-08913-4
- Wenchang Sun and Xingwei Zhou, On Kadec’s $1/4$-theorem and the stability of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), no. 2, 239–242. MR 1711016, DOI 10.1006/acha.1999.0263
- Wenchang Sun and Xingwei Zhou, On the stability of Gabor frames, Adv. in Appl. Math. 26 (2001), no. 3, 181–191. MR 1818742, DOI 10.1006/aama.2000.0715
- David F. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl. 165 (1992), no. 2, 479–504. MR 1155734, DOI 10.1016/0022-247X(92)90053-G
- J. Wexler and S. Raz, Discrete Gabor expansions, Signal Process. 21 (1990), no. 3, 207–221.
- Zhang Jing, On the stability of wavelet and Gabor frames (Riesz bases), J. Fourier Anal. Appl. 5 (1999), no. 1, 105–125. MR 1682246, DOI 10.1007/BF01274192
Bibliographic Information
- Hans G. Feichtinger
- Affiliation: Department of Mathematics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
- MR Author ID: 65680
- ORCID: 0000-0002-9927-0742
- Email: hans.feichtinger@univie.ac.at
- Norbert Kaiblinger
- Affiliation: Department of Mathematics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
- Address at time of publication: Georgia Institute of Technology, School of Mathematics, Atlanta, Georgia 30332-0160
- Email: norbert.kaiblinger@univie.ac.at
- Received by editor(s): April 29, 2002
- Received by editor(s) in revised form: April 9, 2003
- Published electronically: November 12, 2003
- Additional Notes: The second author was supported by the Austrian Science Fund FWF, grants P-14485 and J-2205
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 2001-2023
- MSC (2000): Primary 42C15; Secondary 47B38, 81R30, 94A12
- DOI: https://doi.org/10.1090/S0002-9947-03-03377-4
- MathSciNet review: 2031050