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UNIQUENESS OF VARIETIES OF MINIMAL DEGREE
CONTAINING A GIVEN SCHEME

M. CASANELLAS

Abstract. We prove that if X ⊂ PN has dimension k and it is r-Buchsbaum
with r > max (codimX − k, 0), then X is contained in at most one variety of
minimal degree and dimension k + 1.

1. Introduction

The purpose of this paper is to compute how many varieties of minimal degree
and dimension k + 1 contain a given scheme X ⊂ PN of dimension k ≥ 1. If X is
arithmetically Buchsbaum, then there might be more than one variety of minimal
degree containing it, but in this paper we prove that if X is r-Buchsbaum with
r > max (codimX − k, 0), then X is contained in at most one variety of minimal
degree and dimension k + 1 (see Corollary 4.10 and Theorem 4.9). In this case,
the only varieties of minimal degree that can contain X are rational normal scrolls,
so this paper is mostly devoted to the study of divisors on rational normal scrolls.
We would like to point out that the bound r > max (codimX − k, 0) cannot be
improved in general (see Remark 4.11).

To address this problem we will study the structure of the deficiency modules of
X . As J. Migliore introduced them in [10], the structure of the deficiency modules
can be studied by looking at certain varieties in

(
PN
)∗. We will prove that the

structure of the deficiency modules of a divisor on a rational normal scroll is strongly
determined by the rational normal scroll containing it.

J. Migliore used the study of the structure of deficiency modules to classify unions
of linear varieties in terms of liaison theory (see [10] and [11]). In this paper, we
also use liaison theory as a tool and we also give consequences of our results in
terms of liaison.

Now we outline the structure of the paper. In the following section we introduce
the notation and the preliminaries on the structure of deficiency modules that we
will use later. Section 3 is devoted to the study of the structure of deficiency
modules of non-connected schemes and contains useful results on this subject. The
last section contains the main results of this paper.

The results in this paper are part of my Ph.D. thesis [3]. I would like to thank
my advisor, Prof. R.M. Miró-Roig, for checking these results so carefully and for all
her fruitful advice, and I’d like to acknowledge Prof. E. Casas-Alvero for suggesting
this problem to me.
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2. Notation and preliminaries

Throughout this paper, PN will be the N -dimensional projective space over an
algebraically closed field K of characteristic zero, and we will denote by R the ring
R = K[X0, . . . , XN ]. By a subscheme V ⊂ PN we mean an equidimensional closed
subscheme. If V ⊂ PN is a subscheme, we denote by IV its ideal sheaf and by I(V )
its saturated homogeneous ideal; note that I(V ) =

⊕
t∈ZH

0(PN , IV (t)).
Most of the background needed in this paper can be found in the book of J.

Migliore [12]. In order to make this paper more self-contained, we recall some of
this background here.

Given a closed subscheme V ⊂ PN of dimension d ≥ 1, we define its deficiency
modules as

M i(V ) =
⊕
t∈Z

Hi(PN , IV (t))

for 1 ≤ i ≤ d. The first deficiency module M1(V ) is also called the Rao module (or
Hartshorne-Rao module). As we will see, these modules give us a lot of geometric
information about the scheme. We recall that a scheme of dimension ≥ 1 is locally
Cohen-Macaulay if and only if all of its deficiency modules have finite length (see
[12], Theorem 1.2.5). From now on, all the schemes we consider will be locally
Cohen-Macaulay. Any locally Cohen-Macaulay scheme is r-Buchsbaum for some
r ≥ 0. As the definition of r-Buchsbaum is somewhat inconsistent in the literature,
we adopt the definition given in [14]:

Definition 2.1. Let X ⊂ PN be a locally Cohen-Macaulay subscheme of dimension
≥ 1. We say that X is r-Buchsbaum if r is the least integer such that mr annihilates
all the deficiency modules M i(X), i = 1, . . . ,dimX . We will also say that r is the
Ellia-Migliore-MiróRoig number of X .

Notice that arithmetically Cohen-Macaulay schemes (briefly ACM) and 0-Buchs-
baum schemes coincide, and any arithmetically Buchsbaum scheme not arithmeti-
cally Cohen-Macaulay is 1-Buchsbaum. For curves, the converse also holds: a curve
C ⊂ Pn is 1-Buchsbaum if and only if it is arithmetically Buchsbaum but not ACM;
but this is no longer true in higher dimension (see for instance [13], Example 7.14).
The reader can look at the paper of L.T. Hoa, R.M. Miró-Roig and W. Vogel [7],
where a definition concerning the preservation of the r-Buchsbaum property under
hyperplane sections is given.

In order to study the module structure of the deficiency modules of a subscheme
X ⊂ PN of dimension k ≥ 1, we shall consider the following invariants introduced
in [10]:

For any linear form L ∈ R1, any n ∈ Z and any i = 1, . . . , k, we consider the
homomorphism of K-vector spaces induced by IX(n) ×L→ IX(n+1) on the deficiency
modules of X,

φin(L) : M i(X)n −→M i(X)n+1.

The collection of homomorphisms

φin : R1 −→ HomK(M i(X)n,M i(X)n+1),
L 7−→ φin(L),

n ∈ Z, determines the module structure of M i(X) (for i = 1, . . . , k). We will be
mainly interested in φ1

n(L) (resp. φ1
n), which we will denote simply as φn(L) (resp.

φn), and we will specify the scheme X as φXn (L) (resp. φXn ) if there is danger of
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ambiguity. We can also consider the degeneracy loci of φn and we can identify them
with subvarieties of the dual projective space (PN)∗. We define

Vn, j :=
{
L∗ ∈

(
PN
)∗ | rkφn(L) ≤ j

}
⊆
(
PN
)∗

for any j ∈ Z. Observe that Vn, j ⊆ Vn, j+1. So, if we set sn := max{j | Vn, j  
(PN )∗}, we can define Vn := Vn,sn (or we will be more specific, referring to Vn,j(X)
and Vn(X) when necessary).

Whereas the φn are not invariants up to isomorphism of M1(X), the loci Vn, j
(and hence Vn) are isomorphism invariants, and they are preserved under shift (re-
indexing) and dual (M1(X)∨ has degeneracy loci V ∨n, j = V−n−1, j). These invariants
were introduced and deeply studied in [10] (the reader can also see the book of J.
Migliore [12], sections 1.1 and 5.5). In the rest of the paper we will see that these
invariants are strongly related to the geometry of the scheme we are considering.

We fix some more notation here: for any linear form L ∈ R1, we denote by HL

the hyperplane defined by L. For any scheme X ⊂ PN of dimension k ≥ 1, let UX
be the following open subset of (PN )∗:

UX :=
{
L∗ ∈

(
PN
)∗ | dimHL ∩X = k − 1

}
,

i.e., UX is the set of all L∗ ∈ (PN )∗ such that HL does not contain any irreducible
component of X.

If Z is any closed subscheme of PN , we denote by 〈Z〉 the span of Z, i.e., the
least linear subspace of PN containing Z as a subscheme.

For the definition of G-liaison (Gorenstein liaison), CI-liaison (complete inter-
section liaison), G-linkage and more information about liaison theory, see [12] and
[8]. The result that relates deficiency modules and liaison theory is the following
(see for instance [12], Theorem 5.3.1):

Theorem 2.2 (Hartshorne-Schenzel). Let V1, V2 ⊂ PN be two schemes of dimen-
sion d ≥ 1 in the same even G-liaison class. Then M i(V1) ∼= M i(V2)(t) for all
i = 1, . . . , d and some t ∈ Z.

In particular, by the Hartshorne-Schenzel Theorem 2.2, the invariants Vn,r in-
troduced above are invariants of a given even G-liaison class (in fact, they are also
invariants of CI-liaison classes).

3. The structure of deficiency modules

Using the notation introduced in section 2, we first state a generalized version
of [10], Proposition 2.1:

Lemma 3.1. Let X ⊂ PN be a subscheme and let L ∈ R1 be a linear form such
that L∗ ∈ UX . Then L∗ ∈ UX ∩ Vn if and only if there exists M∗ ∈ UX such that

h0(HL, IX∩HL,HL(n+ 1)) > h0(HM , IX∩HM ,HM (n+ 1)).

Proof. Since L∗ ∈ UX , we have an exact sequence of sheaves

(1) 0 −→ IX(n) ×L−→ IX(n+ 1) −→ IX∩HL,HL(n+ 1) −→ 0

for all n ∈ Z and analogously for any M∗ ∈ UX . Taking cohomology in (1) and
cutting it, we get

(2) 0→ Coker (×L)→ H0(IX∩HL,HL(n+ 1))→M1(X)n
φn(L)−→ M1(X)n+1 → · · ·
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and similarly for any M∗ ∈ UX . But dimK Coker (×L) does not depend on
the choice of L, i.e., dimK Coker (×L) = dimK Coker (×M) for all L∗, M∗ ∈
UX . Therefore, we deduce from (2) that rkφn(L) < rkφn(M) if and only if
h0(IX∩HL,HL(n + 1)) > h0(IX∩HM ,HM (n + 1)) (for L∗ and M∗ in UX). Since
L∗ belongs to Vn if and only if rkφn(L) < rkφn(M) for a general M ∈ R1, the
lemma is proved. �

The following lemma tells us what happens when L∗ does not belong to UX as
long as X is a non-connected subscheme:

Lemma 3.2. Let X =
⋃r
i=1 Yi ⊂ PN be the disjoint union of r schemes of di-

mension k ≥ 1, r ≥ 2. Suppose that the general hyperplane section of X is
non-degenerate (in particular, X is non-degenerate). If HL contains Yi for some
i = 1, . . . , r, then L∗ ∈ V0.

Proof. We observe first that, since X is a non-connected scheme, M1(X)0 6= 0 (see
[12], Theorem 1.2.6). For a general M ∈ R1 we have the exact sequence of sheaves

0→ IX → IX(1)→ IX∩HM ,HM (1)→ 0

that induces the exact sequence on cohomology

0 −→ H0(HM , IX∩HM ,HM (1)) −→M1(X)0
φ0(M)−→ M1(X)1 −→ . . . .

Since, by assumption, X ∩HM is non-degenerate, we obtain that Ker φ0(M) = 0,
and since M1(X)0 6= 0, it makes sense to study V0. In particular, for a general M ∈
R1, φ0(M) is a vector space homomorphism which has rank equal to dimKM

1(X)0.
Now we come to the study of rkφ0(L) when HL contains Yi for some i. We want

to prove that φ0(L) has a non-trivial kernel. Without loss of generality, we may
assume that HL ⊃ Y1, and we write X = Y1 ∪ Z with Z =

⋃r
i=2 Yi. As usual, we

have the exact sequence

0 −→ I(X) = I(Y1) ∩ I(Z) −→ I(Y1)⊕ I(Z) −→ I(Y1) + I(Z) −→ 0.

Since Y1 ∩ Z = ∅, we have IY1 + IZ ∼= OPN , so the exact sequence above induces
(sheafifying and taking cohomology) the following exact sequence of R-modules:

0 −→ R/(I(Y1) + I(Z)) −→M1(X)→M1(Y1)⊕M1(Z) −→ . . . .

We can also consider the multiplication by L, so that this exact sequence (in degrees
0 and 1) leads to the following commutative diagram with exact rows:

0→ K → M1(X)0 → M1(Y1)0 ⊕M1(Z)0 · · ·
↓×L ↓φ0(L) ↓φY1

0 (L)⊕φZ0 (L)

0→ (R/(I(Y1) + I(Z)))1 → M1(X)1 → M1(Y1)1 ⊕M1(Z)1 · · · .

In particular, by the snake lemma, we have an exact sequence

(3) 0 −→ Ker (×L) −→ Ker (φ0(L)) −→ Ker (φY1
0 (L)⊕ φZ0 (L)).

As HL ⊃ Y1, L belongs to I(Y1)1 and so [L] = 0 in (R/(I(Y1) + I(Z)))1. This

means that K ×L→ (R/(I(Y1) + I(Z)))1 is the zero map and Ker (×L) ∼= K. But
then from (3) we can deduce that Ker φ0(L) 6= 0, and hence rkφ0(L) < rkφ0(M)
for a general M . Thus, L∗ ∈ V0, as we wanted to prove. �
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If X is a degenerate scheme, we have

Lemma 3.3 ([12], Proposition 1.3.10 (b)). If X ⊂ PN is a degenerate subscheme
of dimension k ≥ 1 and HL is a hyperplane containing X, then φin(L) = 0 for all
i = 1, . . . , k and n ∈ Z.

Now we will see that for a non-connected reduced scheme X ⊂ PN having more
connected components than codimX − dimX + 1, the hyperplanes HL ⊃ X are
the only ones satisfying φX0 (L) = 0. Indeed, we have

Lemma 3.4. Let X =
⋃n
i=1 Yi ⊂ PN be the disjoint union of n ≥ 2 subschemes

of dimension k ≥ 1. Assume that each Yi is reduced and connected and that n >
N − 2k + 1 = codimX − dimX + 1. If X * HM , then φX0 (M) 6= 0.

Proof. Let HM be a hyperplane not containing X , M ∈ R1. We first consider the
case M∗ ∈ UX . In this case we have the following exact sequence on cohomology:

(4) 0 = H0(IX)→ H0(IX(1))→ H0(HM , IX∩HM (1))→M1(X)0

φX0 (M)−→ M1(X)1 → . . . .

Suppose that φX0 (M) = 0. Then we could shorten the above sequence and obtain
a short exact sequence:

0→ H0(PN , IX(1)) −→ H0(HM , IX∩HM ,HM (1)) −→M1(X)0 −→ 0.

As X is reduced and has n connected components, dimM1(X)0 = n− 1 (see [12],
Theorem 1.2.6), the short exact sequence above would imply h0(HM , IX∩HM ,HM (1))
≥ n−1. On the other hand, since X∩HM is the union of n ≥ 2 disjoint subschemes
of dimension k− 1, the linear span 〈X ∩HM 〉 has dimension at least 2k− 1 and so
h0(HM , IX∩HM ,HM (1)) ≤ N − 1 − 2k + 1. But this leads to a contradiction with
the assumption n > N − 2k + 1.

Now suppose that HM contains one of the components of X , for instance HM ⊃
Yj . Let us call Z the union

⋃
i6=j Yi. Then we have the exact sequences of sheaves

0 −→ IX
ι−→ IZ −→ OYj −→ 0,

0 −→ IZ ×M−→ IX(1) −→ IX∩HM ,HM (1) −→ 0,

and the composition (×M)◦ι induces the map φX0 (M) in cohomology. Thus, taking
cohomology on both exact sequences, we get

0 = H0(IZ) −→ H0(OYj ) −→M1(X)0
ϕ−→M1(Z)0 −→ · · · ,

0 = H0(IZ)→ H0(IX(1))→ H0(HM , IX∩HM (1))→M1(Z)0
ψ→M1(X)1 → · · · .

Since Yi is reduced for any i, we have h0(OYj ) = 1, dimKM
1(X)0 = n − 1 and

dimKM
1(Z)0 = n− 2. So ϕ is a surjective morphism of K-vector spaces (checking

dimensions). Therefore, the morphism φX0 (M) = ψ ◦ ϕ is zero if and only if ψ =
0. But if ψ were the zero map, it would imply that h0(HM , IX∩HM ,HM (1)) =
h0(IX(1)) + dimKM

1(Z)0 ≥ n− 2. Furthermore,

X ∩HM = Yj ∩HM ∪
⋃
i6=j

Yi ∩HM
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spans a projective space of dimension at least 2k (because dim Yj ∩HM = k and
n ≥ 2). Thus n− 2 ≤ h0(HM , IX∩HM ,HM (1)) ≤ N − 1− 2k, which contradicts the
assumption n > N − 2k + 1. Hence, the lemma is proved. �

Remark 3.5. It can be checked that Lemma 3.4 is still true if we change the as-
sumption n > N − 2k + 1 to n > N − 2k + 1 − εX , where εX := h0(PN , IX(1)).
However, the assumption n > N − 2k + 1 − εX cannot be avoided: for instance,
if we consider X ⊂ P3 to be the disjoint union of two lines, then N = 3, k = 1,
n = 2, εX = 0, X is an arithmetically Buchsbaum scheme, and φX0 (L) = 0 for all
L ∈ K[X0, X1, X2, X3]1.

Lemmas 3.3 and 3.4 suggest that if we consider two degenerate schemes with
isomorphic deficiency modules, then there exists a close relation between the hy-
perplanes containing them. Indeed, when we restrict to the hypothesis of Lemma
3.4 we have

Proposition 3.6. Let X =
⋃n
i=1 Yi and X ′ =

⋃n′
i=1 Y

′
i be the disjoint union of

n ≥ 2 (resp. n′) connected and reduced schemes of dimension k ≥ 1. Suppose that
X,X ′ are subschemes of PN and n > N − 2k + 1 = codimX − dimX + 1. If X is
a degenerate scheme and M i(X) ∼= M i(X ′)(t0) for some t0 ∈ Z, i = 1, . . . , k, then
n = n′, t0 = 0, X ′ is degenerate and 〈X ′〉 = 〈X〉.

In particular, if X is degenerate and X ′ is evenly G-linked to X, then n = n′,
X ′ is degenerate and 〈X ′〉 = 〈X〉.

Proof. Note that the assumption n > N − 2k + 1 ensures n > 2 because the linear
span ofX has dimension≥ dim (〈Y1 ∪ Y2〉) ≥ k+k+1, and 〈X〉 ⊂ PN , soN ≥ 2k+1
and n > N − 2k + 1 ≥ 2.

We first prove the assertion n = n′. Since there exists t0 ∈ Z such that M i(X) ∼=
M i(X ′)(t0) for i = 1, . . . , k, in particular we have M1(X) ∼= M1(X ′)(t0). But since
X and X ′ are reduced schemes, it follows that M1(X)t = M1(X ′)t = 0 for all
t < 0 and M1(X)0

∼= Kn−1 and M1(X ′)0
∼= Kn′−1 (see [12], Theorem 1.2.6 (b)).

So t0 = 0 and n = n′.
Now we will prove that the hyperplanes containing X and the hyperplanes con-

taining X ′ coincide. Indeed, if HL is a hyperplane containing X , L ∈ R1, we have
proved in Lemma 3.3 that φXt (L) = 0 for all t ∈ Z; so L∗ ∈ V0, 0(X). Furthermore,
since X satisfies the hypothesis of Lemma 3.4, we deduce from this lemma that

V0, 0(X) =
{
L∗ ∈

(
PN
)∗ | HL ⊃ X

}
.

Analogously, since n = n′, X ′ also satisfies the hypothesis of Lemmas 3.3 and 3.4,
and we have

V0, 0(X ′) =
{
L∗ ∈

(
PN
)∗ | HL ⊃ X ′

}
.

We know that the loci V0, 0 are isomorphism invariants. Therefore V0, 0(X) =
V0, 0(X ′) or, equivalently,{

L∗ ∈
(
PN
)∗ | HL ⊃ X

}
=
{
L∗ ∈

(
PN
)∗ | HL ⊃ X ′

}
.

Thus, 〈X〉 = 〈X ′〉, which proves what we want.
The last assertion of the proposition follows directly from the Hartshorne-

Schenzel Theorem 2.2. �
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Remarks 3.7. (1) In [11], Remark 2.5, J. Migliore conjectured that “if C is any
degenerate, not arithmetically Cohen-Macaulay curve in P4 and C′ is in the same
CI-liaison class of C in P4, then they lie in the same hyperplane and are CI-linked
inside that hyperplane”. The same statement in the G-liaison context is false in
general (see [4] and [9] for examples of arithmetically Buchsbaum curves that do
not satisfy this conjecture). However, due to Proposition 3.6 and the Rao Theorem
for curves in P3, we have that the conjecture holds if C and C′ ⊂ P4 are evenly
linked reduced curves having more than 3 connected components (notice that by
[2], Theorem 2.3, C and C′ are not arithmetically Buchsbaum curves in this case).

(2) Once more, in Proposition 3.6, the assumption n > N − 2k + 1 cannot be
avoided. Indeed, if we consider X ⊂ P4 to be the disjoint union of two lines,
then X is a degenerate arithmetically Buchsbaum scheme; but we know by [4]
(or also [9]) that X is G-linked to any other union of two skew lines in P4 (not
necessarily lying in the same P3). If we change the assumption n > N − 2k + 1 to
n > N−2k+1−εX as in Remark 3.5, then we can guarantee only that 〈X〉 ⊂ 〈X ′〉,
but not the equality 〈X〉 = 〈X ′〉. In order to have 〈X〉 = 〈X ′〉 we need to verify
also that n′ = n > N − 2k + 1 − εX′ . For instance, if X and X ′ are unions of 3
degenerate skew lines in P4, X ⊂ H , X ′ ⊂ H ′, and we assume that X and X ′ are
evenly G-linked, X˜X ′, then we can ensure that 〈X〉 = 〈X ′〉, because εX = εX′

and 3 > N − 2k + 1 − εX = N − 2k + 1 − εX′ = 2. But if we consider Y to be
the non-degenerate union of 3 skew lines in P4, and we assume that X and Y are
evenly G-linked, then we can only say that 〈X〉 = H ⊂ 〈Y 〉 = P4, which is obvious.

4. Uniqueness of varieties of minimal degree

containing a given scheme

It is known that any non-degenerate irreducible varietyX ⊂ PN satisfies degX ≥
codimX+1, and the varieties that attain this bound are called varieties of minimal
degree. First of all we will be interested in one type of variety of minimal degree:
rational normal scrolls. Concerning rational normal scrolls, we use the same nota-
tion as [6]: S(a0, . . . , ak) ⊂ PN is a rational normal scroll of dimension k + 1 and
degree c :=

∑
ai in PN , N ≥ c + k. A rational normal scroll S = S(a0, . . . , ak)

is smooth if and only if a0 > 0 or S = S(0, . . . , 0, 1) = Pk+1. Since we are not
interested in divisors on PN , we will always exclude the case S = Pk+1, so when we
refer to S smooth we will always mean a0 > 0. The divisor class group of a rational
normal scroll S = S(a0, . . . , ak) ⊂ Pc+k, k ≥ 1, is generated by the hyperplane
section H and a linear subspace F ⊂ S of dimension k. The canonical class of S is
KS ∼ −(k + 1)H + (c− 2)F .

We will now apply the results of the previous section to divisors of rational normal
scrolls. Since our schemes are assumed to be locally Cohen-Macaulay and we are
not interested in studying arithmetically Cohen-Macaulay schemes, the rational
normal scrolls we consider in this subsection will all be smooth:

Remark 4.1. If X is a locally Cohen-Macaulay scheme but not an arithmetically
Cohen-Macaualy scheme, then X cannot be contained on any singular rational
normal scroll (see [3], Remark 3.1.12).

We will use the following known result (see [3], Lemmas 3.1.11 and 3.3.3, or
[14]) that allows us to quickly identify r-Buchsbaum divisors on a smooth rational
normal scroll.
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Lemma 4.2. Let X ∼ aH+bF be an effective divisor on a smooth rational normal
scroll S = S(a0, . . . , ak) ⊂ PN . Then:

i) X is 0-Buchsbaum (or ACM) if and only if 1− c ≤ b ≤ 1.
ii) If b > 1, then X is an r-Buchsbaum scheme if and only if b = (r−1)a0+p+2

for some 0 ≤ p < a0 (in other words, r = b b−2
a0
c + 1). In this case,

M i(X) = 0 for i = 2, . . . , k; M1(X)l 6= 0 if and only if a ≤ l ≤ b b−2
a0
c+ a,

and diamM1(X) = r.
iii) If b < 1− c, then X is an r-Buchsbaum scheme if and only if −c+ 2− b =

(r − 1)a0 + p + 2 for some 0 ≤ p < a0. In this case, M i(X) = 0 for
i = 1, . . . , k−1; Mk(X)l 6= 0 if and only if b−c−ba0

c+a−k−1 ≤ l ≤ a−k−1,
and diamMk(X) = r.

To begin with the results of this section, we will give a way to decide whether
the general hyperplane section of a disjoint union of linear varieties of dimension
k, X =

⋃n
i=1 Li ⊂ PN , lying on a smooth rational normal scroll S(a0, . . . , ak) is

degenerate or not. To this end, we introduce some notation:

Definition 4.3 ([1], Definition 2.1). Let S = S(a0, . . . , ak) ⊂ Pc+k be a rational
normal scroll. We define the index of relative balance r(S) of S as

r(S) := k + 1−max

{
j

∣∣∣∣ jaj ≤ j∑
i=0

aj

}
.

Note that r(S) ≤ k because a1 ≤ a0 + a1.

Let S = S(a0, . . . , ak) ⊂ Pc+k be a rational normal scroll and let H be a hyper-
plane such that S′ := H ∩ S is again a rational normal scroll (this is the case if H
does not contain any fiber of S). Write S′ = S(a′0, . . . a

′
k−1); then, according to [1],

Theorem 2.4,
1.
∑k−1

i=0 a
′
i = c,

2. a′k−r(S) ≤ a′0 + 1, and
3. a′k−i = ak+1−i 1 ≤ i ≤ r(S)− 1.

In particular, we deduce from 1, 2 and 3 that if r(S) ≥ 2 (or equivalently ak > c
k ),

then a′k−1 = ak; and if r(S) = 1 (i.e. c ≥ kak), then a′0 =
⌊
c
k

⌋
and a′i ≤

⌊
c
k

⌋
+ 1 for

i = 1, . . . , k − 1. We have

Lemma 4.4. Let S = S(a0, . . . , ak) ⊂ Pc+k, c =
∑k

i=0 ai, be a smooth rational
normal scroll. An effective divisor Y ∼ bF on S is non-degenerate if and only if
b ≥ ak + 1.

Proof. Since S is non-degenerate and ACM, the exact sequence

0→ IS → IY → IY,S ∼= OS(−Y )→ 0

gives an exact sequence on cohomology

0 = H0(IS(1)) −→ H0(IY (1)) −→ H0(OS(H − Y )) −→ H1(IS(1)) = 0.

Hence, h0(IY (1)) = h0(OS(H − bF )) =
∑k

i=0 max(ai − b + 1, 0) (see [6] or [3] for
results on the cohomology of divisors on rational normal scrolls). So, h0(IY (1)) = 0
if and only if ai − b + 1 ≤ 0 for all i = 0, . . . , k, i.e., b ≥ ak + 1. �
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Corollary 4.5. Let X ∼ bF be a non-degenerate divisor of a smooth rational
normal scroll S = S(a0, . . . , ak) ⊂ Pc+k. Assume b ≥

⌈
c
k

⌉
+ 1. If H is a hyperplane

not containing any fiber of S, then X ∩H ⊂ S′ = S(a′0, . . . , a
′
k−1) ⊂ H ∼= Pc+k−1

is also non-degenerate.

Proof. First of all, note that since X is non-degenerate, applying Lemma 4.4 we
get b ≥ ak + 1. We now distinguish two cases depending on the index of relative
balance r(S) of S:

Case (1): r(S) ≥ 2. In this case, b ≥ ak + 1 = a′k−1 + 1, and Lemma 4.4 proves
that X ∩H is non-degenerate.

Case (2): r(S) = 1. Then a′0 =
⌊
c
k

⌋
(use 1, 2 and 3 on the previous page) and

a′k−1 ≤
⌊
c
k

⌋
+ 1. If in addition c

k is not an integer, then b ≥
⌈
c
k

⌉
+ 1 >

⌊
c
k

⌋
+ 2 ≥

a′k−1 + 1, and X ∩H is non-degenerate by the argument above. If c
k is an integer,

c = λk, then a′0 = λ, a′k−1 ≤ λ + 1, and since c =
∑k−1
i=0 a

′
i, we obtain in fact that

a′k−1 = λ =
⌈
c
k

⌉
. Thus, b ≥

⌈
c
k

⌉
+ 1 = a′k−1 + 1, and Lemma 4.4 gives again that

X ∩H is non-degenerate. �

We are now ready to state and prove the main results of this section. In what
follows, the rational normal scrolls we consider are non-degenerate because the
degenerate case can be avoided by Proposition 3.6.

Proposition 4.6. Let X =
⋃n
i=1 Li ⊂ PN and X ′ =

⋃n′
i=1 L

′
i ⊂ PN be disjoint

unions of linear varieties of dimension k ≥ 1. Assume that X is a union of fibers
of a smooth rational normal scroll S = S(a0, . . . , ak) ⊂ PN , N = c + k, and that
n > c− k + 1.

Then X and X ′ have isomorphic Rao module (up to shift) if and only if n = n′

and X ′ is also a divisor on S.

Remark 4.7. Under the hypothesis of this proposition, X cannot be an arithmeti-
cally Buchsbaum scheme in any case. Indeed, since X is linearly equivalent to nF
in S and n > c − k + 1 ≥ a0 + k − k + 1 (because S is smooth), we have that
n ≥ a0 + 2, and by Lemma 4.2 we obtain that X is r-Buchsbaum with r ≥ 2.
Therefore, Proposition 4.6 does not contradict the results of [4].

Proof of Proposition 4.6. Note first that since S is smooth and we have assumed
n > c − k + 1, we have n > ak + k − k + 1 = ak + 1. Thus, by Lemma 4.4, X is
non-degenerate.

We observe now that for any hyperplaneH not containing any fiber of S, X∩H ⊂
H is non-degenerate. Indeed, the assumption n ≥ c − k + 2 implies n ≥

⌈
c
k

⌉
+ 1,

because c− k ≥ c
k − 1 if and only if ck−1

k ≥ k− 1, which is true because c ≥ k + 1.
Hence, by Corollary 4.5, X ∩H is non-degenerate.

Suppose that n = n′ and X ′ also lies on the rational normal scroll S. Then X ′

is also linearly equivalent to nF , so X and X ′ are evenly G-linked thanks to [8],
Corollary 5.13. In particular, by the Hartshorne-Schenzel Theorem 2.2, X and X ′

have isomorphic Rao module up to some shift.
We are going to prove the converse. Assume that X and X ′ have isomorphic

Rao module, M1(X) ∼= M1(X ′)(t) for some t ∈ Z. Since both M1(X) and M1(X ′)
start in degree 0, we have t = 0; and since M1(X) ∼= Kn−1, M1(X ′) ∼= Kn′−1, we
obtain n = n′.
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Notice that the general hyperplane section of X ′ is non-degenerate. Indeed, let
HL be a general hyperplane. If we consider the exact sequence of sheaves

0 −→ IX −→ IX(1) −→ IX∩H,H(1) −→ 0

(resp. 0 −→ IX′ −→ IX′(1) −→ IX′∩H,H(1) −→ 0)

and we take cohomology, we get the exact sequence

0 −→ H0(PN , IX∩H,H(1)) −→M1(X)0
φ0(L)−→ M1(X)1

(resp. 0 −→ H0(PN , IX′∩H,H(1)) −→M1(X ′)0
φ′0(L)−→ M1(X ′)1).

As we have proved that the general hyperplane section of X is non-degenerate, we
obtain that rkφ0(L) = n− 1 for a general HL. Now, since M1(X) and M1(X ′) are
isomorphic as graded R-modules, we also have that rkφ′0(L) = n− 1 for a general
L, and hence the general hyperplane section X ′ ∩H is non-degenerate.

Since we have proved that X (resp. X ′) and its general hyperplane section (resp.
the general hyperplane section of X ′) are non-degenerate, we have verified that X
and X ′ satisfy the hypothesis of Lemma 3.2. We define

X∗ :=
{
L∗ ∈

(
PN
)∗ |HL contains an irreducible component of X

}
⊂
(
PN
)∗
,

X ′∗ :=
{
L∗ ∈

(
PN
)∗ |HL contains an irreducible component of X ′

}
⊂
(
PN
)∗
.

Applying Lemma 3.2, we get that X∗ ⊂ V0(X) and X ′∗ ⊂ V0(X ′).
Let us define A := {L∗|HL contains some fiber of S } ⊂ (PN )∗. We are going to

check that V0(X) ⊆ A. Indeed, we consider L∗ an element of V0(X). If L∗ does
not belong to UX , then HL contains some Li which is a fiber of S; so L∗ ∈ A. If L∗

belongs to UX and HL does not contain any fiber of S, then h0(HL, IX∩HL(1)) = 0,
as we have proved above. Therefore, by Lemma 3.1, V0(X) ⊆ A.

On the other hand, since V0(X) are isomorphism invariants of the first deficiency
modules, we have

X ′∗ ⊆ V0(X ′) = V0(X) ⊆ A.
But from these inclusions we deduce that for any hyperplane HL containing one of
the L′i (i.e. L∗ ∈ X ′∗), HL contains some fiber of S. But this is not true unless L′i
are also fibers of S. So X ′ ⊂ S, as we wanted to prove. �

The next corollary, generalizing [10], Theorem 3.1, immediately follows from the
Hartshorne-Schenzel Theorem 2.2 and Proposition 4.6:

Corollary 4.8. Let X =
⋃n
i=1 Li ⊂ PN and X ′ =

⋃n′
i=1 L

′
i ⊂ PN be disjoint unions

of linear varieties of dimension k ≥ 1. Assume that X is a union of fibers of a
smooth rational normal scroll S = S(a0, . . . , ak) ⊂ Pc+k, N = c + k, and that
n > c− k + 1. If X ′ is evenly G-linked to X, then X ′ ⊂ S.

Proposition 4.6 allows us to prove the main result of this paper:

Theorem 4.9. Let X ⊂ PN be a non-degenerate subscheme of dimension k ≥ 1 that
is a divisor on a smooth rational normal scroll S ⊂ PN of degree c (so N = c+ k).
We write X ∼ aH+bF ⊂ S and we assume that either b > c−k+1 or b < k+1−2c.
Then S is the only rational normal scroll of dimension k + 1 containing X.
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Proof. Assume that there is another rational normal scroll S′ = S(a′0, . . . , a
′
k) ⊂ PN

containing X . As X is non-degenerate, S′ is also non-degenerate, so degS′ = c.
1st case: b > c− k + 1.

Claim: In S′, X is linearly equivalent to aH + bF .

Proof of claim. If X is linearly equivalent to αH+βF on S′, for some integers α, β,
then looking at the deficiency modules and using Lemma 4.2 we see that there are
two possibilities:

1) β > 1. In this case, again by Lemma 4.2 we see that a = α because a (resp.
α) is the first degree for which the Rao module of X is non-zero. Hence we have
degX = ac+ b = ac+ β, and so get b = β, and we are done.

2) k = 1 and β < 1 − c. We will see that this case cannot occur. Indeed, in
this case, looking at the first and last degree in which the Rao module of X is
non-zero, by Lemma 4.2, we have a = α − 2 + b−c−βa′0

c and b b−2
a0
c + a = α − 2.

Thus, −b−c−βa′0
c = b b−2

a0
c; but the left term in this equality is ≤ 0 and the right

term is ≥ 0, so b b−2
a0
c = 0. But we were assuming that b > c − k + 1 = c, so

b − 2 ≥ c − 1 ≥ 2a0 − 1 ≥ a0, and hence b b−2
a0
c cannot be 0 (in other words, X

cannot be 1-Buchsbaum). The claim is proved.
Since b > c−k+1, by [8], Corollary 5.13, X is evenly G-linked to the union Y =⋃b
i=1 Li (resp. Y ′ =

⋃b
i=1 L

′
i) of b different fibers of S and to a union Y ′ =

⋃b
i=1 L

′
i

of b different fibers of S′. Thus Y and Y ′ have isomorphic deficiency modules up
to shift (due to the Hartshorne-Schenzel Theorem), and we obtain by Proposition
4.6 that Y ⊂ S′ and Y ′ ⊂ S. Furthermore, this argument can be done for any set
of b fibers of S (since any set of b fibers of S has deficiency modules isomorphic to
X and we can apply Proposition 4.6), so that any set of b different fibers of S is in
S′. This directly implies S = S′, as we wanted to prove.

2nd case: b < k + 1− 2c.
If b < k+ 1− 2c, then using [8], Corollary 5.5, we perform a G-link X mH−KS˜ Z

(resp. X
mH−KS′˜ Z ′) in S (resp. S′). The residual Z (resp. Z ′) is linearly

equivalent in S (resp. S′) to (m−a+k+1)H+(−c+2−b)F . As b < k+1−2c, we
obtain −c+ 2− b > c− k+ 1 and by [8], Corollary 5.14, we have that Z (resp. Z ′)
is evenly G-linked to a set Y (resp. Y ′) of −c+ 2− b fibers of S (resp. S′). Using
with Y and Y ′ the same arguments as in the previous paragraph, we conclude that
S = S′. �

As a consequence of the classification of varieties of minimal degree we also get

Corollary 4.10. If X ⊂ PN is a non-degenerate r-Buchsbaum scheme of dimension
k ≥ 1 and codimension c with r > max (c− k, 0) = max (N − 2k, 0), then X is
contained in at most one variety of minimal degree of dimension k + 1.

Proof. The theorem classifying varieties of minimal degree (see [5], [6]) says that
if V ⊂ PN is a non-degenerate irreducible variety of minimal degree, then V is
either a rational normal scroll, or a cone over the Veronese surface P2 ↪→ P5, or the
Veronese surface itself, or a hyperquadric of rank greater than 4.

Since any divisor on a hyperquadric of rank greater than 4, or on a cone over the
Veronese surface in P5, or on the Veronese surface in P5 is an arithmetically Cohen-
Macaulay scheme and X is assumed to be r-Buchsbaum with r > 0, we conclude
that X cannot be a divisor on any of these varieties. Hence, X is contained on a



1886 M. CASANELLAS

rational normal scroll S = S(a0, . . . , ak). Moreover, asX is locally Cohen-Macaulay
but not arithmetically Cohen-Macaulay, the rational normal scroll S containing it
is smooth (see Remark 4.1), so a0 ≥ 1 and c ≥ k + a0 ≥ k + 1. Assume that X is
linearly equivalent to aH + bF on S. We are now going to check that X satisfies
the hypothesis of Theorem 4.9.

As X is r-Buchsbaum, by Lemma 4.2 we have b = (r − 1)a0 + p + 2 or b =
−c+ 2− (r − 1)a0 − p− 2 for some 0 ≤ p < a0.

Since we are assuming r > c − k and we have seen that a0 ≥ 1 and c − k ≥ 1,
in the first case we have b ≥ (c − k)a0 + p + 2 ≥ (c − k)a0 + 2 > c− k + 1 and in
the second case we have b ≤ −c+ 2 − (c− k)a0 − p− 2 ≤ −2c+ k < −2c+ k + 1.
Therefore X satisfies the hypothesis of Theorem 4.9, and we conclude that S is
the unique rational normal scroll containing X . Summing up, we have that X is
contained on a unique variety of minimal degree. �

Remarks 4.11. (1) As we have seen in the proof of Corollary 4.10, if X is r-
Buchsbaum with r > max (c− k, 0) and X lies on a variety of minimal degree,
then c − k ≥ 1. Hence X cannot be 1-Buchsbaum. In fact, when X is arith-
metically Buchsbaum, then X can be contained in more than one smooth rational
normal scroll (see [4]).

(2) The bound r > c− k cannot be improved in general. Indeed, if we consider
curves in P3 (so c = 2 and k = 1), then if X is the union of two skew lines, it follows
that X is 1-Buchsbaum (1 = c − k) and X is contained in more than one smooth
quadric surface in P3. If we consider curves in P4, the case of three skew lines is the
only case of non-arithmetically Buchsbaum curves not covered by Theorem 4.9 or
Corollary 4.10. But if X ⊂ P4 is the disjoint union of 3 general skew lines, then X
is contained in more than one rational normal scroll S(1, 2) ⊂ P4. We can construct
these rational normal scrolls as follows: X has a unique trisecant line Z, and we
consider a plane π ⊂ P4 such that π ∩ Z = ∅. In this plane π we can find infinitely
many conics through X ∩ π such that the rational normal scroll generated by Z
and the conic contains X .

The following corollary clearly generalizes [10], Theorem 3.2:

Corollary 4.12. Let X,X ′ ⊂ PN be two subschemes of dimension k ≥ 1, N = c+k.
Suppose that X ⊂ S ⊂ PN (resp. X ′ ⊂ S′ ⊂ PN ) is a divisor of a rational normal
scroll S (resp. S′) of degree c. We write X ∼ aH + bF ⊂ S and X ′ ∼ a′H + b′F ⊂
S′, and we assume that either b, b′ > c − k + 1 or b, b′ < k + 1 − 2c. Then the
following conditions are equivalent:

(i) X and X ′ are evenly G-linked.
(ii) The deficiency modules of X and X ′ are isomorphic (up to shift).
(iii) b = b′ and S = S′.

Proof. (i) ⇒ (ii). If X and X ′ are evenly G-linked, then their deficiency modules
are isomorphic (up to shift) by the Hartshorne-Schenzel Theorem (see [12], Theorem
5.3.1).

(ii) ⇒ (iii). If b, b′ > c − k + 1, then by [8], Corollary 5.14, X (and resp. X ′)
is evenly G-linked to the union Y =

⋃b
i=1 Li (resp. Y ′ =

⋃b′
i=1 L

′
i) of b different

fibers of S (resp. b′ different fibers of S′). Since we are assuming that X and X ′

have isomorphic deficiency modules (up to shift), it follows that Y and Y ′ also have
isomorphic deficiency modules (up to shift) by the Hartshorne-Schenzel Theorem.
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Now by Proposition 4.6, we get b = b′, Y ⊂ S′ (and Y ′ ⊂ S). Thus Theorem 4.9
gives us that S = S′, as we wanted to prove.

If b, b′ < k + 1 − 2c, then, using [8], Corollary 5.5, again we perform a G-link

X
mH−KS˜ Y in S (resp. X ′

m′H−KS′˜ Y ′ in S′). The residual Y (resp. Y ′)
is linearly equivalent in S (resp. in S′) to (m − a + k + 1)H + (−c + 2 − b)F
(resp. to (m′ − a′ + k + 1)H + (−c+ 2 − b′)F ). Since X and X ′ have isomorphic
deficiency modules (up to shift), so do Y and Y ′. As b, b′ < k + 1 − 2c, we obtain
−c+2− b > c−k+1 and −c+2− b′ > c−k+1, and using the first case considered
above applied to Y and Y ′, we conclude that S = S′ and −c+ 2− b = −c+ 2− b′
(so b = b′).

(iii) ⇒ (i). If b = b′ and S = S′, then we conclude by [8], Corollary 5.14, that
X and X ′ are evenly G-linked. �

Examples 4.13. We give here examples of G-liaison classes of schemes that satisfy
the hypotheses of Corollary 4.12.

1) Let X ⊂ P4 (resp. X ′ ⊂ P4) be a non-degenerate union of 4 skew lines that
have a 4-secant line L (resp. L′) and such that there is a hyperplane H + L (resp.
H ′ + L′) meeting X (resp. X ′) on a degenerate set of points. Then X (resp. X ′)
lies on a unique rational normal scroll S = S(1, 2) ⊂ P4 (resp. S′ = S(1, 2) ⊂ P4)
(we can construct it as in Remark 4.11 (2)). Therefore, according to Corollary 4.12,
X and X ′ belong to the same even G-liaison class if and only if S = S′. In this
case, X and X ′ share the same common 4-secant line.

2) Let C,C′ ⊂ PN be two smooth, non-degenerate, linearly normal, hyperelliptic
irreducible curves. If C,C′ are r-Buchsbaum with r > 1 and degC, degC′ > 3N−3,
then C (resp. C′) is a divisor on a rational normal scroll S ⊂ PN (resp. S′ ⊂ PN )
and C, C′ are evenly G-linked if and only if S = S′ and degC = degC′. Indeed,
in this case there exists a linear system of dimension 1 and degree 2 on C, and we
denote by D the divisor defining this linear system. Then we apply [5], Theorem
2, to C and D, and we get that there exists a rational normal scroll S ⊂ PN of
dimension N+1−h0(OC(HC−D)) and degree h0(OC(HC−D)). Since HC is very
ample and D has degree 2, h0(OC(HC −D)) = h0(OC(HC)) − 2 = N − 1. Thus,
we have a rational normal scroll surface S ⊂ PN of degree c := N −1 containing C.
Moreover, if we write C ∼ aH+bF on S, we have degC = a(N−1)+b and a = C ·F .
Since, by the construction of [5], Theorem 2, the fibers F of S are the linear spans
of divisors linearly equivalent to D, which are divisors of degree 2 on C, we have
a = C · F = 2. Therefore b = degC − 2N + 2 and C ∼ 2H + (degC − 2N + 2)F.
The same argument can be applied to C′ ⊂ PN , and we find a rational normal
scroll surface S′ ⊂ PN , containing C′ and C′ ∼ 2H + (degC′ − 2N + 2)F on
S′. If degC, degC′ > 3N − 3 then b = degC − 2N + 2 > N − 1 = c (resp.
b′ = degC′− 2N + 2 > c), and the hypotheses of Corollary 4.12 are verified. Thus,
C and C′ are evenly G-linked if and only if b = b′ , i.e., degC = degC′.
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