Root vectors for geometrically simple two-parameter eigenvalues
HTML articles powered by AMS MathViewer
- by Paul Binding and Tomaž Košir
- Trans. Amer. Math. Soc. 356 (2004), 1705-1726
- DOI: https://doi.org/10.1090/S0002-9947-04-03542-1
- Published electronically: January 6, 2004
- PDF | Request permission
Abstract:
A class of two-parameter eigenvalue problems involving generally nonselfadjoint and unbounded operators is studied. A basis for the root subspace at a geometrically simple eigenvalue of Fredholm type is computed in terms of the underlying two-parameter system. Comparison with Faierman’s work on two-parameter boundary value problems of Sturm-Liouville type is given as an application.References
- F. V. Atkinson, Multiparameter eigenvalue problems, Mathematics in Science and Engineering, Vol. 82, Academic Press, New York-London, 1972. Volume I: Matrices and compact operators. MR 0451001
- Paul Binding, Left definite multiparameter eigenvalue problems, Trans. Amer. Math. Soc. 272 (1982), no. 2, 475–486. MR 662047, DOI 10.1090/S0002-9947-1982-0662047-3
- Paul Binding, Multiparameter root vectors, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 1, 19–29. MR 981988, DOI 10.1017/S0013091500006866
- Paul Binding and Patrick J. Browne, Asymptotics of eigencurves for second order ordinary differential equations. I, J. Differential Equations 88 (1990), no. 1, 30–45. MR 1079857, DOI 10.1016/0022-0396(90)90107-Z
- Paul Binding and Tomaž Košir, Second root vectors for multiparameter eigenvalue problems of Fredholm type, Trans. Amer. Math. Soc. 348 (1996), no. 1, 229–249. MR 1321567, DOI 10.1090/S0002-9947-96-01470-5
- P. A. Binding and K. Seddighi, Elliptic multiparameter eigenvalue problems, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 2, 215–228. MR 892692, DOI 10.1017/S0013091500028297
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- M. Faierman, Two-parameter eigenvalue problems in ordinary differential equations, Pitman Research Notes in Mathematics Series, vol. 205, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991. MR 1124402
- G.A. Gadzhiev. Introduction to Multiparameter Spectral Theory (in Russian), Azerbaijan State University, Baku, 1987.
- I. Gohberg, P. Lancaster, and L. Rodman, Invariant subspaces of matrices with applications, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1986. A Wiley-Interscience Publication. MR 873503
- Luzius Grunenfelder and Tomaž Košir, An algebraic approach to multiparameter spectral theory, Trans. Amer. Math. Soc. 348 (1996), no. 8, 2983–2998. MR 1361640, DOI 10.1090/S0002-9947-96-01679-0
- Luzius Grunenfelder and Tomaž Košir, Coalgebras and spectral theory in one and several parameters, Recent developments in operator theory and its applications (Winnipeg, MB, 1994) Oper. Theory Adv. Appl., vol. 87, Birkhäuser, Basel, 1996, pp. 177–192. MR 1399361
- Luzius Grunenfelder and Tomaž Košir, Geometric aspects of multiparameter spectral theory, Trans. Amer. Math. Soc. 350 (1998), no. 6, 2525–2546. MR 1451601, DOI 10.1090/S0002-9947-98-02078-9
- H.(G.A.) Isaev. Lectures on Multiparameter Spectral Theory. Dept. of Math. and Stats., University of Calgary, 1985.
- G. A. Isaev and A. S. Faĭnshteĭn, The Taylor spectrum and multiparameter spectral theory for systems of operators, Dokl. Akad. Nauk SSSR 297 (1987), no. 1, 30–34 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 3, 413–417. MR 916927
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- T. Košir. Commuting Matrices and Multiparameter Eigenvalue Problems. PhD thesis, Dept. of Math. and Stats., University of Calgary, 1993.
- Tomaž Košir, On the structure of commutative matrices, Linear Algebra Appl. 187 (1993), 163–182. MR 1221702, DOI 10.1016/0024-3795(93)90133-9
- Tomaž Košir, Finite-dimensional multiparameter spectral theory: the nonderogatory case, Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), 1994, pp. 45–70. MR 1306972, DOI 10.1016/0024-3795(94)90396-4
- Tomaž Košir, On the structure of commutative matrices. II, Linear Algebra Appl. 261 (1997), 293–305. MR 1448878
- T. Košir. Root Vectors for Geometrically Simple Multiparameter Eigenvalues, to appear in Int. Equat. Oper. Theory.
- Josef Meixner, Friedrich W. Schäfke, and Gerhard Wolf, Mathieu functions and spheroidal functions and their mathematical foundations, Lecture Notes in Mathematics, vol. 837, Springer-Verlag, Berlin-New York, 1980. Further studies. MR 606934
- Bor Plestenjak, A numerical algorithm for computing a basis for the root subspace at a nonderogatory eigenvalue of a multiparameter system, Linear Algebra Appl. 285 (1998), no. 1-3, 257–276. MR 1653535, DOI 10.1016/S0024-3795(98)10154-4
- B. D. Sleeman, Multiparameter spectral theory in Hilbert space, Research Notes in Mathematics, vol. 22, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1978. MR 533152
- Angus Ellis Taylor and David C. Lay, Introduction to functional analysis, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR 564653
- Hans Volkmer, Multiparameter eigenvalue problems and expansion theorems, Lecture Notes in Mathematics, vol. 1356, Springer-Verlag, Berlin, 1988. MR 973644, DOI 10.1007/BFb0089295
Bibliographic Information
- Paul Binding
- Affiliation: Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Email: binding@ucalgary.ca
- Tomaž Košir
- Affiliation: Department of Mathematics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
- Email: tomaz.kosir@fmf.uni-lj.si
- Received by editor(s): June 15, 2001
- Published electronically: January 6, 2004
- Additional Notes: The first author’s research was supported by NSERC of Canada
The second author’s research was supported by the Ministry of Science and Technology of Slovenia - © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1705-1726
- MSC (2000): Primary 35P10, 47A13; Secondary 35J55
- DOI: https://doi.org/10.1090/S0002-9947-04-03542-1
- MathSciNet review: 2031038