Algebraic $\mathbb {Z}^d$-actions of entropy rank one
HTML articles powered by AMS MathViewer
- by Manfred Einsiedler and Douglas Lind
- Trans. Amer. Math. Soc. 356 (2004), 1799-1831
- DOI: https://doi.org/10.1090/S0002-9947-04-03554-8
- Published electronically: January 6, 2004
- PDF | Request permission
Abstract:
We investigate algebraic $\mathbb Z^d$-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of skew products, where the fiber maps are elements from an algebraic $\mathbb Z^d$-action of entropy rank one. This leads, via the relative variational principle, to a formula for the topological entropy of continuous skew products as the maximum of a finite number of topological pressures. We use this to settle a conjecture concerning the relational entropy of commuting toral automorphisms.References
- L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ. 17 (1962), no. 7, 5–13 (Russian, with English summary). MR 0140660
- Roy L. Adler, A note on the entropy of skew product transformations, Proc. Amer. Math. Soc. 14 (1963), 665–669. MR 153818, DOI 10.1090/S0002-9939-1963-0153818-4
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55–102. MR 1355295, DOI 10.1090/S0002-9947-97-01634-6
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Manfred Einsiedler, Douglas Lind, Richard Miles, and Thomas Ward, Expansive subdynamics for algebraic $\mathbb Z^d$-actions, Ergodic Th. & Dyn. Syst. 21 (2001), 1695–1729.
- Manfred Einsiedler and Klaus Schmidt, Irreducibility, homoclinic points, and adjoint actions of algebraic $\mathbb {Z}^d$-actions of rank one, preprint.
- Shmuel Friedland, Entropy of graphs, semigroups and groups, Ergodic theory of $\textbf {Z}^d$ actions (Warwick, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 319–343. MR 1411226, DOI 10.1017/CBO9780511662812.013
- W. Geller and M. Pollicott, An entropy for $\mathbf Z^2$-actions with finite entropy generators, Fund. Math. 157 (1998), no. 2-3, 209–220. Dedicated to the memory of Wiesław Szlenk. MR 1636888, DOI 10.4064/fm-157-2-3-209-220
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
- Steven Arthur Kalikow, $T,\,T^{-1}$ transformation is not loosely Bernoulli, Ann. of Math. (2) 115 (1982), no. 2, 393–409. MR 647812, DOI 10.2307/1971397
- Boris Kalinin and Anatole Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR 1858547, DOI 10.1090/pspum/069/1858547
- Anatole Katok, Svetlana Katok, and Klaus Schmidt, Rigidity of measurable structure for algebraic actions of higher-rank abelian groups, ESI-Preprint: ftp://ftp.esi.ac.at/pub/Preprints/esi850.ps.
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- Bruce Kitchens and Klaus Schmidt, Isomorphism rigidity of irreducible algebraic $\textbf {Z}^d$-actions, Invent. Math. 142 (2000), no. 3, 559–577. MR 1804161, DOI 10.1007/PL00005793
- François Ledrappier, Un champ markovien peut être d’entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A561–A563 (French, with English summary). MR 512106
- François Ledrappier and Peter Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), no. 3, 568–576. MR 476995, DOI 10.1112/jlms/s2-16.3.568
- D. A. Lind, Ergodic automorphisms of the infinite torus are Bernoulli, Israel J. Math. 17 (1974), 162–168. MR 346130, DOI 10.1007/BF02882235
- Douglas Lind, Klaus Schmidt, and Tom Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593–629. MR 1062797, DOI 10.1007/BF01231517
- D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 3, 411–419. MR 961739, DOI 10.1017/S0143385700004545
- Brian Marcus and Sheldon Newhouse, Measures of maximal entropy for a class of skew products, Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Math., vol. 729, Springer, Berlin, 1979, pp. 105–125. MR 550415
- John Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), no. 3, 357–385. MR 955558
- Kyewon Koh Park, On directional entropy functions, Israel J. Math. 113 (1999), 243–267. MR 1729449, DOI 10.1007/BF02780179
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- Dinakar Ramakrishnan and Robert J. Valenza, Fourier analysis on number fields, Graduate Texts in Mathematics, vol. 186, Springer-Verlag, New York, 1999. MR 1680912, DOI 10.1007/978-1-4757-3085-2
- Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406. MR 1062766, DOI 10.1017/S0143385700005629
- Klaus Schmidt, Automorphisms of compact abelian groups and affine varieties, Proc. London Math. Soc. (3) 61 (1990), no. 3, 480–496. MR 1069512, DOI 10.1112/plms/s3-61.3.480
- Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152
- Mark A. Shereshevsky, Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms, Indag. Math. (N.S.) 4 (1993), no. 2, 203–210. MR 1225269, DOI 10.1016/0019-3577(93)90040-6
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- André Weil, Basic number theory, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag, New York-Berlin, 1974. MR 0427267
Bibliographic Information
- Manfred Einsiedler
- Affiliation: Department of Mathematics, Pennsylvania State University, State College, Pennsylvania 16802
- Address at time of publication: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 636562
- Email: einsiedl@math.psu.edu, einsiedl@math.washington.edu
- Douglas Lind
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 114205
- Email: lind@math.washington.edu
- Received by editor(s): July 26, 2002
- Published electronically: January 6, 2004
- Additional Notes: The first author gratefully acknowledges the hospitality of the University of Washington and the Penn State University, and was supported by the FWF research project P14379-MAT and the Erwin Schrödinger Stipendium J2090
The second author thanks the generous hospitality of the Yale Mathematics Department - © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 1799-1831
- MSC (2000): Primary 37A35, 37B40, 54H20; Secondary 37A45, 37D20, 13F20
- DOI: https://doi.org/10.1090/S0002-9947-04-03554-8
- MathSciNet review: 2031042