## A nonstandard Riemann existence theorem

HTML articles powered by AMS MathViewer

- by Rahim Moosa PDF
- Trans. Amer. Math. Soc.
**356**(2004), 1781-1797 Request permission

## Abstract:

We study elementary extensions of compact complex spaces and deduce that every complete type of dimension $1$ is internal to projective space. This amounts to a nonstandard version of the Riemann Existence Theorem, and answers a question posed by Anand Pillay.## References

- F. Campana,
*Coréduction algébrique d’un espace analytique faiblement kählérien compact*, Invent. Math.**63**(1981), no. 2, 187–223 (French). MR**610537**, DOI 10.1007/BF01393876 - H. Grauert, Th. Peternell, and R. Remmert (eds.),
*Several complex variables. VII*, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of*Current problems in mathematics. Fundamental directions. Vol. 74*(Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR**1326617**, DOI 10.1007/978-3-662-09873-8 - Gerd Fischer,
*Complex analytic geometry*, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR**0430286** - Akira Fujiki,
*On a holomorphic fiber bundle with meromorphic structure*, Publ. Res. Inst. Math. Sci.**19**(1983), no. 1, 117–134. MR**700944**, DOI 10.2977/prims/1195182979 - Kenji Ueno,
*Introduction to the theory of compact complex spaces in the class ${\cal C}$*, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 219–230. MR**715652**, DOI 10.2969/aspm/00110219 - H. Grauert, Th. Peternell, and R. Remmert (eds.),
*Several complex variables. VII*, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of*Current problems in mathematics. Fundamental directions. Vol. 74*(Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR**1326617**, DOI 10.1007/978-3-662-09873-8 - Robert C. Gunning and Hugo Rossi,
*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696** - Wilfrid Hodges,
*Model theory*, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR**1221741**, DOI 10.1017/CBO9780511551574 - R. Moosa. The model theory of compact complex spaces. To appear in the Proceedings of the Logic Colloquium ’01 (Vienna).
- R. Moosa. On saturation and the model theory of compact Kähler manifolds. Preprint.
- R. Moosa.
*Contributions to the model theory of fields and compact complex spaces*. PhD thesis, University of Illinois, Urbana-Champaign, 2001. - H. Grauert, Th. Peternell, and R. Remmert (eds.),
*Several complex variables. VII*, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of*Current problems in mathematics. Fundamental directions. Vol. 74*(Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR**1326617**, DOI 10.1007/978-3-662-09873-8 - Anand Pillay,
*Some model theory of compact complex spaces*, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999) Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 323–338. MR**1802020**, DOI 10.1090/conm/270/04380 - Bruno Poizat,
*Groupes stables*, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR**902156** - H. Grauert, Th. Peternell, and R. Remmert (eds.),
*Several complex variables. VII*, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of*Current problems in mathematics. Fundamental directions. Vol. 74*(Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR**1326617**, DOI 10.1007/978-3-662-09873-8 - Kenji Ueno,
*Classification theory of algebraic varieties and compact complex spaces*, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR**0506253** - B. Zilber. Model theory and algebraic geometry. In
*Proceedings of the 10th Easter Conference on Model Theory*, Berlin, 1993.

## Additional Information

**Rahim Moosa**- Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1
- Address at time of publication: Massachusetts Institute of Technology, Department of Mathematics, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
- MR Author ID: 665313
- Email: moosa@math.mit.edu
- Received by editor(s): July 17, 2002
- Published electronically: January 6, 2004
- Additional Notes: This work was supported by the Natural Science and Engineering Research Council of Canada
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 1781-1797 - MSC (2000): Primary 03C60; Secondary 32J99
- DOI: https://doi.org/10.1090/S0002-9947-04-03559-7
- MathSciNet review: 2031041