Hardy inequalities with optimal constants and remainder terms
HTML articles powered by AMS MathViewer
- by Filippo Gazzola, Hans-Christoph Grunau and Enzo Mitidieri
- Trans. Amer. Math. Soc. 356 (2004), 2149-2168
- DOI: https://doi.org/10.1090/S0002-9947-03-03395-6
- Published electronically: December 9, 2003
- PDF | Request permission
Abstract:
We show that the classical Hardy inequalities with optimal constants in the Sobolev spaces $W_0^{1,p}$ and in higher-order Sobolev spaces on a bounded domain $\Omega \subset \mathbb {R}^n$ can be refined by adding remainder terms which involve $L^p$ norms. In the higher-order case further $L^p$ norms with lower-order singular weights arise. The case $1<p<2$ being more involved requires a different technique and is developed only in the space $W_0^{1,p}$.References
- Adimurthi, Nirmalendu Chaudhuri, and Mythily Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc. 130 (2002), no. 2, 489–505. MR 1862130, DOI 10.1090/S0002-9939-01-06132-9
- Adimurthi, M.J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its application to Schrödinger operator, Nonlinear Differ. Eq. Appl. NoDEA, to appear.
- Frederick J. Almgren Jr. and Elliott H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683–773. MR 1002633, DOI 10.1090/S0894-0347-1989-1002633-4
- G. Arioli, F. Gazzola, H.-Ch. Grunau, E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity, preprint.
- G. Barbatis, S. Filippas, A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., this issue.
- T. Boggio, Sulle funzioni di Green d’ordine $m$, Rend. Circ. Mat. Palermo 20 (1905), 97-135.
- Haïm Brezis and Elliott H. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), no. 1, 73–86. MR 790771, DOI 10.1016/0022-1236(85)90020-5
- Haïm Brezis and Moshe Marcus, Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 1-2, 217–237 (1998). Dedicated to Ennio De Giorgi. MR 1655516
- Haim Brezis, Moshe Marcus, and Itai Shafrir, Extremal functions for Hardy’s inequality with weight, J. Funct. Anal. 171 (2000), no. 1, 177–191. MR 1742864, DOI 10.1006/jfan.1999.3504
- Haim Brezis and Juan Luis Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443–469. MR 1605678
- L. D’Ambrosio, Some Hardy inequalities on the Heisenberg group, Differential Equations, in press.
- E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in $L_p(\Omega )$, Math. Z. 227 (1998), no. 3, 511–523. MR 1612685, DOI 10.1007/PL00004389
- Henrik Egnell, Existence and nonexistence results for $m$-Laplace equations involving critical Sobolev exponents, Arch. Rational Mech. Anal. 104 (1988), no. 1, 57–77. MR 956567, DOI 10.1007/BF00256932
- Stathis Filippas and Achilles Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal. 192 (2002), no. 1, 186–233. MR 1918494, DOI 10.1006/jfan.2001.3900
- Filippo Gazzola and Hans-Christoph Grunau, Critical dimensions and higher order Sobolev inequalities with remainder terms, NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 1, 35–44. MR 1828947, DOI 10.1007/PL00001437
- G. H. Hardy, Notes on some points in the integral calculus, Messenger Math. 48 (1919), 107-112.
- G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge: University Press, 1934.
- Peter Lindqvist, On the equation $\textrm {div}\,(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505, DOI 10.1090/S0002-9939-1990-1007505-7
- Moshe Marcus and Itai Shafrir, An eigenvalue problem related to Hardy’s $L^p$ inequality, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 581–604. MR 1817710
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- È. Mitidieri, A simple approach to Hardy inequalities, Mat. Zametki 67 (2000), no. 4, 563–572 (Russian, with Russian summary); English transl., Math. Notes 67 (2000), no. 3-4, 479–486. MR 1769903, DOI 10.1007/BF02676404
- Jean-Jacques Moreau, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris 255 (1962), 238–240 (French). MR 139919
- Patrizia Pucci and James Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69 (1990), no. 1, 55–83. MR 1054124
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Giorgio Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718. MR 601601
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- Juan Luis Vazquez and Enrike Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), no. 1, 103–153. MR 1760280, DOI 10.1006/jfan.1999.3556
- R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega )$ into $L^{2N/(N-4)}(\Omega )$, Differential Integral Equations 6 (1993), no. 2, 259–276. MR 1195382
Bibliographic Information
- Filippo Gazzola
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Email: gazzola@mate.polimi.it
- Hans-Christoph Grunau
- Affiliation: Fakultät für Mathematik, Otto-von-Guericke-Universität, Postfach 4120, D-39016 Magdeburg, Germany
- Email: Hans-Christoph.Grunau@mathematik.uni-magdeburg.de
- Enzo Mitidieri
- Affiliation: Dipartimento di Scienze Matematiche, Via A. Valerio 12/1, Università degli Studi di Trieste, I-34100 Trieste, Italy
- Email: mitidier@univ.trieste.it
- Received by editor(s): June 20, 2000
- Received by editor(s) in revised form: May 8, 2003
- Published electronically: December 9, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 2149-2168
- MSC (2000): Primary 46E35; Secondary 35B50, 35J40
- DOI: https://doi.org/10.1090/S0002-9947-03-03395-6
- MathSciNet review: 2048513