## Parametrized $\diamondsuit$ principles

HTML articles powered by AMS MathViewer

- by Justin Tatch Moore, Michael Hrušák and Mirna Džamonja PDF
- Trans. Amer. Math. Soc.
**356**(2004), 2281-2306 Request permission

## Abstract:

We will present a collection of guessing principles which have a similar relationship to $\diamondsuit$ as cardinal invariants of the continuum have to CH. The purpose is to provide a means for systematically analyzing $\diamondsuit$ and its consequences. It also provides for a unified approach for understanding the status of a number of consequences of CH and $\diamondsuit$ in models such as those of Laver, Miller, and Sacks.## References

- B. Balcar and M. Hrušák. Combinatorics of dense subsets of the rationals. Preprint, 2003.
- Tomek Bartoszyński and Haim Judah,
*Set theory*, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR**1350295** - T. Baumgartner. Personal communication, January 2003.
- Andreas Blass,
*Reductions between cardinal characteristics of the continuum*, Set theory (Boise, ID, 1992–1994) Contemp. Math., vol. 192, Amer. Math. Soc., Providence, RI, 1996, pp. 31–49. MR**1367133**, DOI 10.1090/conm/192/02347 - Jörg Brendle. Mad families and iteration theory. In Y. Zhang, editor,
*Logic and Algebra*, 1–31. Contemp. Math., 302, AMS 2002. - Jörg Brendle,
*Mob families and mad families*, Arch. Math. Logic**37**(1997), no. 3, 183–197. MR**1619601**, DOI 10.1007/s001530050091 - Keith J. Devlin and Saharon Shelah,
*A weak version of $\diamondsuit$ which follows from $2^{\aleph _{0}}<2^{\aleph _{1}}$*, Israel J. Math.**29**(1978), no. 2-3, 239–247. MR**469756**, DOI 10.1007/BF02762012 - Eric K. van Douwen,
*The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR**776622** - Alan Dow,
*More set-theory for topologists*, Topology Appl.**64**(1995), no. 3, 243–300. MR**1342520**, DOI 10.1016/0166-8641(95)00034-E - T. Eisworth. All ladder systems can be anti-Dowker.
*Preprint*. - Todd Eisworth and Judith Roitman,
*$\textrm {CH}$ with no Ostaszewski spaces*, Trans. Amer. Math. Soc.**351**(1999), no. 7, 2675–2693. MR**1638230**, DOI 10.1090/S0002-9947-99-02407-1 - M. Goldstern and S. Shelah,
*Ramsey ultrafilters and the reaping number—$\textrm {Con}({\mathfrak {r}}<{\mathfrak {u}})$*, Ann. Pure Appl. Logic**49**(1990), no. 2, 121–142. MR**1077075**, DOI 10.1016/0168-0072(90)90063-8 - J. Hirschorn.
*Cohen and random reals*. Ph.D. thesis, University of Toronto, 2000. - Michal Hrušák,
*Life in the Sacks model*, Acta Univ. Carolin. Math. Phys.**42**(2001), no. 2, 43–58. 29th Winter School on Abstract Analysis (Lhota nad Rohanovem/Zahrádky u České Lípy, 2001). MR**1900391** - M. Hrušák.
*Rendezvous with madness*. Ph.D. thesis, York University, 1999. - Michael Hrušák,
*Another $\diamondsuit$-like principle*, Fund. Math.**167**(2001), no. 3, 277–289. MR**1815092**, DOI 10.4064/fm167-3-5 - R. B. Jensen. Souslin’s Hypothesis is incompatible with $V=L$.
*Notices Amer. Math. Soc.*, 15:935, 1968. - H. Judah and S. Shelah,
*Killing Luzin and Sierpiński sets*, Proc. Amer. Math. Soc.**120**(1994), no. 3, 917–920. MR**1164145**, DOI 10.1090/S0002-9939-1994-1164145-0 - Kenneth Kunen,
*Set theory*, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR**756630** - Paul Larson and Stevo Todorcevic,
*Katětov’s problem*, Trans. Amer. Math. Soc.**354**(2002), no. 5, 1783–1791. MR**1881016**, DOI 10.1090/S0002-9947-01-02936-1 - Paul Larson and Stevo Todorčević,
*Chain conditions in maximal models*, Fund. Math.**168**(2001), no. 1, 77–104. MR**1835483**, DOI 10.4064/fm168-1-3 - J. T. Moore. Random forcing and (S) and (L). Submitted to Top. Appl.
- J. T. Moore.
*Ramsey theory on sets of real numbers*. Ph.D. thesis, University of Toronto, 2000. - A. J. Ostaszewski,
*On countably compact, perfectly normal spaces*, J. London Math. Soc. (2)**14**(1976), no. 3, 505–516. MR**438292**, DOI 10.1112/jlms/s2-14.3.505 - Andrzej Rosłanowski and Saharon Shelah,
*Norms on possibilities. I. Forcing with trees and creatures*, Mem. Amer. Math. Soc.**141**(1999), no. 671, xii+167. MR**1613600**, DOI 10.1090/memo/0671 - Saharon Shelah,
*Covering of the null ideal may have countable cofinality*, Fund. Math.**166**(2000), no. 1-2, 109–136. Saharon Shelah’s anniversary issue. MR**1804707**, DOI 10.4064/fm-166-1-2-109-136 - Saharon Shelah,
*Proper and improper forcing*, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR**1623206**, DOI 10.1007/978-3-662-12831-2 - Saharon Shelah,
*On cardinal invariants of the continuum*, Axiomatic set theory (Boulder, Colo., 1983) Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 183–207. MR**763901**, DOI 10.1090/conm/031/763901 - Otmar Spinas,
*Partition numbers*, Ann. Pure Appl. Logic**90**(1997), no. 1-3, 243–262. MR**1489310**, DOI 10.1016/S0168-0072(97)00038-9 - S. Todorčević. Coherent sequences (preprint 2002). In
*Handbook of Set Theory*. North-Holland. - Stevo Todorčević,
*Partitioning pairs of countable ordinals*, Acta Math.**159**(1987), no. 3-4, 261–294. MR**908147**, DOI 10.1007/BF02392561 - Stevo Todorčević,
*Partition problems in topology*, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR**980949**, DOI 10.1090/conm/084 - Stevo Todorcevic,
*Random set-mappings and separability of compacta*, Proceedings of the International Conference on Set-theoretic Topology and its Applications (Matsuyama, 1994), 1996, pp. 265–274. MR**1425943**, DOI 10.1016/S0166-8641(96)00060-0 - Peter Vojtáš,
*Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis*, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619–643. MR**1234291** - Nancy M. Warren,
*Properties of Stone-Čech compactifications of discrete spaces*, Proc. Amer. Math. Soc.**33**(1972), 599–606. MR**292035**, DOI 10.1090/S0002-9939-1972-0292035-X - W. Hugh Woodin,
*The axiom of determinacy, forcing axioms, and the nonstationary ideal*, De Gruyter Series in Logic and its Applications, vol. 1, Walter de Gruyter & Co., Berlin, 1999. MR**1713438**, DOI 10.1515/9783110804737 - O. Yiparaki.
*On Some Partition Trees*. Ph.D. thesis, University of Michigan, 1994. - Yi Zhang,
*On a class of m.a.d. families*, J. Symbolic Logic**64**(1999), no. 2, 737–746. MR**1777782**, DOI 10.2307/2586496

## Additional Information

**Justin Tatch Moore**- Affiliation: Department of Mathematics, Boise State University, Boise, Idaho 83725
- MR Author ID: 602643
- Email: justin@math.boisestate.edu
**Michael Hrušák**- Affiliation: Institute of Mathematics, University Nacional Autonoma de Mexico, Apartado Postal 27-3, 58089 Morelia, Mexico
- MR Author ID: 602083
- ORCID: 0000-0002-1692-2216
- Email: michael@matmor.unam.mx
**Mirna Džamonja**- Affiliation: School of Mathematics, University of East Anglia, Norwich, England NR4 7TJ
- ORCID: setImmediate$0.3709267400444315$1
- Email: m.dzamonja@uea.ac.uk
- Received by editor(s): September 12, 2002
- Published electronically: October 8, 2003
- Additional Notes: The first and third authors received support from EPSRC grant GR/M71121 for the research of this paper. The research of the second author was supported in part by the Netherlands Organization for Scientific Research (NWO) – Grant 613.007.039, and in part by the Grant Agency of the Czech Republic – Grant GAČR 201/00/1466.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 2281-2306 - MSC (2000): Primary 03E17, 03E65
- DOI: https://doi.org/10.1090/S0002-9947-03-03446-9
- MathSciNet review: 2048518