Metrical diophantine approximation for continued fraction like maps of the interval
HTML articles powered by AMS MathViewer
- by Andrew Haas and David Molnar
- Trans. Amer. Math. Soc. 356 (2004), 2851-2870
- DOI: https://doi.org/10.1090/S0002-9947-03-03371-3
- Published electronically: July 24, 2003
- PDF | Request permission
Abstract:
We study the metrical properties of a class of continued fraction-like mappings of the unit interval, each of which is defined as the fractional part of a Möbius transformation taking the endpoints of the interval to zero and infinity.References
- Roy Adler and Leopold Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 229–334. MR 1085823, DOI 10.1090/S0273-0979-1991-16076-3
- Tim Bedford, Michael Keane, and Caroline Series (eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. MR 1130170
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- W. Bosma, H. Jager, and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no. 3, 281–299. MR 718069, DOI 10.1016/1385-7258(83)90063-X
- Robert M. Burton, Cornelis Kraaikamp, and Thomas A. Schmidt, Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1277–1298. MR 1650073, DOI 10.1090/S0002-9947-99-02442-3
- Harvey Cohn, Representation of Markoff’s binary quadratic forms by geodesics on a perforated torus, Acta Arith. 18 (1971), 125–136. MR 288079, DOI 10.4064/aa-18-1-125-136
- Caroline Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), no. 1, 69–80. MR 810563, DOI 10.1112/jlms/s2-31.1.69
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Karlheinz Gröchenig and Andrew Haas, Backward continued fractions, Hecke groups and invariant measures for transformations of the interval, Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1241–1274. MR 1424398, DOI 10.1017/S0143385700010014
- Andrew Haas, Invariant measures and natural extensions, Canad. Math. Bull. 45 (2002), no. 1, 97–108. MR 1884139, DOI 10.4153/CMB-2002-011-4
- H. Jager, The distribution of certain sequences connected with the continued fraction, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 1, 61–69. MR 834320, DOI 10.1016/1385-7258(86)90006-5
- A. Ya. Khintchine, Continued fractions, P. Noordhoff Ltd., Groningen, 1963. Translated by Peter Wynn. MR 0161834
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- Hitoshi Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981), no. 2, 399–426. MR 646050, DOI 10.3836/tjm/1270215165
- G. J. Rieger, Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen, J. Reine Angew. Math. 310 (1979), 171–181 (German). MR 546670, DOI 10.1515/crll.1979.310.171
- Alfréd Rényi, On algorithms for the generation of real numbers, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 265–293 (Hungarian). MR 0097645
- Andrew M. Rockett and Peter Szüsz, Continued fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1188878, DOI 10.1142/1725
- V. A. Rohlin, Exact endomorphism of a Lebesgue space, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14 (1964), 443–474 (Hungarian). MR 0228654
- Fritz Schweiger, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR 1419320
- F. Schweiger, Multidimensional Continued Fractions. Oxford Univ. Press, 2000.
- S. M. Rudolfer and K. M. Wilkinson, A number-theoretic class of weak Bernoulli transformations, Math. Systems Theory 7 (1973), 14–24. MR 323744, DOI 10.1007/BF01824802
Bibliographic Information
- Andrew Haas
- Affiliation: Department of Mathematics, The University of Connecticut, Storrs, Connecticut 06269-3009
- Email: haas@math.uconn.edu
- David Molnar
- Affiliation: Department of Mathematics, The University of Connecticut, Storrs, Connecticut 06269-3009
- Email: molnar@stolaf.edu
- Received by editor(s): July 8, 2002
- Received by editor(s) in revised form: April 8, 2003
- Published electronically: July 24, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 2851-2870
- MSC (2000): Primary 11J70, 11J83, 37E05
- DOI: https://doi.org/10.1090/S0002-9947-03-03371-3
- MathSciNet review: 2052599