A separable Brown-Douglas-Fillmore theorem and weak stability
HTML articles powered by AMS MathViewer
- by Huaxin Lin
- Trans. Amer. Math. Soc. 356 (2004), 2889-2925
- DOI: https://doi.org/10.1090/S0002-9947-04-03558-5
- Published electronically: March 2, 2004
- PDF | Request permission
Abstract:
We give a separable Brown-Douglas-Fillmore theorem. Let $A$ be a separable amenable $C^*$-algebra which satisfies the approximate UCT, $B$ be a unital separable amenable purely infinite simple $C^*$-algebra and $h_1, h_2: A\to B$ be two monomorphisms. We show that $h_1$ and $h_2$ are approximately unitarily equivalent if and only if $[h_1]=[h_2] \textrm {in} KL(A,B).$ We prove that, for any $\varepsilon >0$ and any finite subset $\mathcal {F}\subset A$, there exist $\delta >0$ and a finite subset $\mathcal {G}\subset A$ satisfying the following: for any amenable purely infinite simple $C^*$-algebra $B$ and for any contractive positive linear map $L: A\to B$ such that \[ \|L(ab)-L(a)L(b)\|<\delta \quad \mathrm {and}\quad \|L(a)\|\ge (1/2)\|a\| \] for all $a\in \mathcal {G},$ there exists a homomorphism $h: A\to B$ such that \[ \|h(a)-L(a)\|<\varepsilon \mathrm {for all} a\in \mathcal {F} \] provided, in addition, that $K_i(A)$ are finitely generated. We also show that every separable amenable simple $C^*$-algebra $A$ with finitely generated $K$-theory which is in the so-called bootstrap class is weakly stable with respect to the class of amenable purely infinite simple $C^*$-algebras. As an application, related to perturbations in the rotation $C^*$-algebras studied by U. Haagerup and M. Rørdam, we show that for any irrational number $\theta$ and any $\varepsilon >0$ there is $\delta >0$ such that in any unital amenable purely infinite simple $C^*$-algebra $B$ if \[ \|uv-e^{i\theta \pi }vu\|<\delta \] for a pair of unitaries, then there exists a pair of unitaries $u_1$ and $v_1$ in $B$ such that \[ u_1v_1=e^{i\theta \pi }v_1u_1, \|u_1-u\|<\varepsilon \quad \text {and} \quad \|v_1-v\|<\varepsilon . \]References
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^*$-algebras, Pacific J. Math. 71 (1977), no. 2, 335–348. MR 454645, DOI 10.2140/pjm.1977.71.335
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Man Duen Choi and Edward G. Effros, The completely positive lifting problem for $C^*$-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, DOI 10.2307/1970968
- Marius Dadarlat and Søren Eilers, On the classification of nuclear $C^*$-algebras, Proc. London Math. Soc. (3) 85 (2002), no. 1, 168–210. MR 1901373, DOI 10.1112/S0024611502013679
- Marius Dadarlat and Søren Eilers, Asymptotic unitary equivalence in $KK$-theory, $K$-Theory 23 (2001), no. 4, 305–322. MR 1860859, DOI 10.1023/A:1011930304577
- Marius Dădărlat and Terry A. Loring, $K$-homology, asymptotic representations, and unsuspended $E$-theory, J. Funct. Anal. 126 (1994), no. 2, 367–383. MR 1305073, DOI 10.1006/jfan.1994.1151
- Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355–377. MR 1404333, DOI 10.1215/S0012-7094-96-08412-4
- Kenneth J. Dykema and Mikael Rørdam, Purely infinite, simple $C^*$-algebras arising from free product constructions, Canad. J. Math. 50 (1998), no. 2, 323–341. MR 1618318, DOI 10.4153/CJM-1998-017-x
- George A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219. MR 1241132, DOI 10.1515/crll.1993.443.179
- George A. Elliott and Guihua Gong, On the classification of $C^*$-algebras of real rank zero. II, Ann. of Math. (2) 144 (1996), no. 3, 497–610. MR 1426886, DOI 10.2307/2118565
- László Fuchs, Infinite abelian groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York-London, 1970. MR 0255673
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and almost commuting matrices, J. Operator Theory 40 (1998), no. 2, 217–275. MR 1660385
- Guihua Gong and Huaxin Lin, Almost multiplicative morphisms and $K$-theory, Internat. J. Math. 11 (2000), no. 8, 983–1000. MR 1797674, DOI 10.1142/S0129167X0000043X
- Nigel Higson, A characterization of $KK$-theory, Pacific J. Math. 126 (1987), no. 2, 253–276. MR 869779, DOI 10.2140/pjm.1987.126.253
- Uffe Haagerup and Mikael Rørdam, Perturbations of the rotation $C^\ast$-algebras and of the Heisenberg commutation relation, Duke Math. J. 77 (1995), no. 3, 627–656. MR 1324637, DOI 10.1215/S0012-7094-95-07720-5
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no. 1, 133–150. MR 587371
- E. Kirchberg, The classification of purely infinite simple $C^*$-algebras using Kasparov’s theory, to appear in the Fields Institute Communication series.
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- Hua Xin Lin, Almost commuting unitary elements in purely infinite simple $C^*$-algebras, Math. Ann. 303 (1995), no. 4, 599–616. MR 1359951, DOI 10.1007/BF01461007
- Huaxin Lin, Extensions of $C(X)$ by simple $C^*$-algebras of real rank zero, Amer. J. Math. 119 (1997), no. 6, 1263–1289. MR 1481815, DOI 10.1353/ajm.1997.0040
- Huaxin Lin, Stable approximate unitary equivalence of homomorphisms, J. Operator Theory 47 (2002), no. 2, 343–378. MR 1911851
- Huaxin Lin, Tracially AF $C^*$-algebras, Trans. Amer. Math. Soc. 353 (2001), no. 2, 693–722. MR 1804513, DOI 10.1090/S0002-9947-00-02680-5
- Huaxin Lin, Classification of simple tracially AF $C^*$-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. MR 1814969, DOI 10.4153/CJM-2001-007-8
- Huaxin Lin, The tracial topological rank of $C^*$-algebras, Proc. London Math. Soc. (3) 83 (2001), no. 1, 199–234. MR 1829565, DOI 10.1112/plms/83.1.199
- Huaxin Lin, An introduction to the classification of amenable $C^*$-algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1884366, DOI 10.1142/9789812799883
- H. Lin, An approximate Universal Coefficient Theorem, preprint.
- Terry A. Loring, $C^*$-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159–203. MR 1207940, DOI 10.1006/jfan.1993.1029
- Terry A. Loring, Stable relations. II. Corona semiprojectivity and dimension-drop $C^*$-algebras, Pacific J. Math. 172 (1996), no. 2, 461–475. MR 1386627, DOI 10.2140/pjm.1996.172.461
- Terry A. Loring, Lifting solutions to perturbing problems in $C^*$-algebras, Fields Institute Monographs, vol. 8, American Mathematical Society, Providence, RI, 1997. MR 1420863, DOI 10.1090/fim/008
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- N. Christopher Phillips, Approximation by unitaries with finite spectrum in purely infinite $C^*$-algebras, J. Funct. Anal. 120 (1994), no. 1, 98–106. MR 1262248, DOI 10.1006/jfan.1994.1025
- N. Christopher Phillips, Approximate unitary equivalence of homomorphisms from odd Cuntz algebras, Operator algebras and their applications (Waterloo, ON, 1994/1995) Fields Inst. Commun., vol. 13, Amer. Math. Soc., Providence, RI, 1997, pp. 243–255. MR 1424965
- Eberhard Kirchberg and N. Christopher Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\scr O_2$, J. Reine Angew. Math. 525 (2000), 17–53. MR 1780426, DOI 10.1515/crll.2000.065
- Mikael Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175–200. MR 1225963, DOI 10.1515/crll.1993.440.175
- Mikael Rørdam, Classification of certain infinite simple $C^*$-algebras, J. Funct. Anal. 131 (1995), no. 2, 415–458. MR 1345038, DOI 10.1006/jfan.1995.1095
- Mikael Rørdam, A short proof of Elliott’s theorem: ${\scr O}_2\otimes {\scr O}_2\cong {\scr O}_2$, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), no. 1, 31–36. MR 1276341
- M. Rørdam, Classification of nuclear, simple $C^*$-algebras, Classification of nuclear $C^*$-algebras. Entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145. MR 1878882, DOI 10.1007/978-3-662-04825-2_{1}
- Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474. MR 894590, DOI 10.1215/S0012-7094-87-05524-4
- Claude Schochet, Topological methods for $C^{\ast }$-algebras. III. Axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399–445. MR 757510, DOI 10.2140/pjm.1984.114.399
- Claude Schochet, Topological methods for $C^{\ast }$-algebras. IV. Mod $p$ homology, Pacific J. Math. 114 (1984), no. 2, 447–468. MR 757511, DOI 10.2140/pjm.1984.114.447
- C. L. Schochet, The fine structure of the Kasparov groups I: Continuity of the $KK$-paring, preprint, Sept. 1996.
- C. L. Schochet, The fine structure of the Kasparov groups II: relative quasidiagonality, preprint, Sept. 1996.
- Shuang Zhang, A property of purely infinite simple $C^*$-algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 717–720. MR 1010004, DOI 10.1090/S0002-9939-1990-1010004-X
- Shuang Zhang, On the structure of projections and ideals of corona algebras, Canad. J. Math. 41 (1989), no. 4, 721–742. MR 1012625, DOI 10.4153/CJM-1989-033-4
- Shuang Zhang, On the exponential rank and exponential length of $C^*$-algebras, J. Operator Theory 28 (1992), no. 2, 337–355. MR 1273050
Bibliographic Information
- Huaxin Lin
- Affiliation: Department of Mathematics, East China Normal University, Shanghai, People’s Republic of China
- Address at time of publication: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
- Received by editor(s): September 18, 2002
- Received by editor(s) in revised form: April 29, 2003
- Published electronically: March 2, 2004
- Additional Notes: This research was partially supported by NSF grant DMS 0097903
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 2889-2925
- MSC (2000): Primary 46L05, 46L80
- DOI: https://doi.org/10.1090/S0002-9947-04-03558-5
- MathSciNet review: 2052601