The cohomology of certain Hopf algebras associated with $p$-groups
HTML articles powered by AMS MathViewer
- by Justin M. Mauger
- Trans. Amer. Math. Soc. 356 (2004), 3301-3323
- DOI: https://doi.org/10.1090/S0002-9947-03-03381-6
- Published electronically: November 12, 2003
- PDF | Request permission
Abstract:
We study the cohomology $H^*(A)=\operatorname {Ext}_A^*(k,k)$ of a locally finite, connected, cocommutative Hopf algebra $A$ over $k=\mathbb {F}_p$. Specifically, we are interested in those algebras $A$ for which $H^*(A)$ is generated as an algebra by $H^1(A)$ and $H^2(A)$. We shall call such algebras semi-Koszul. Given a central extension of Hopf algebras $F\rightarrow A\rightarrow B$ with $F$ monogenic and $B$ semi-Koszul, we use the Cartan-Eilenberg spectral sequence and algebraic Steenrod operations to determine conditions for $A$ to be semi-Koszul. Special attention is given to the case in which $A$ is the restricted universal enveloping algebra of the Lie algebra obtained from the mod-$p$ lower central series of a $p$-group. We show that the algebras arising in this way from extensions by $\mathbb {Z}/(p)$ of an abelian $p$-group are semi-Koszul. Explicit calculations are carried out for algebras arising from rank 2 $p$-groups, and it is shown that these are all semi-Koszul for $p\geq 5$.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20โ104. MR 141119, DOI 10.2307/1970147
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), no.ย 2, 473โ527. MR 1322847, DOI 10.1090/S0894-0347-96-00192-0
- Norman Blackburn, Generalizations of certain elementary theorems on $p$-groups, Proc. London Math. Soc. (3) 11 (1961), 1โ22. MR 122876, DOI 10.1112/plms/s3-11.1.1
- Jill Dietz, Stable splittings of classifying spaces of metacyclic $p$-groups, $p$ odd, J. Pure Appl. Algebra 90 (1993), no.ย 2, 115โ136. MR 1250764, DOI 10.1016/0022-4049(93)90125-D
- Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- Daniel S. Kahn, $\textrm {Cup}-i$ products and the Adams spectral sequence, Topology 9 (1970), 1โ9. MR 253337, DOI 10.1016/0040-9383(70)90043-1
- Stanley O. Kochman, Symmetric Massey products and a Hirsch formula in homology, Trans. Amer. Math. Soc. 163 (1972), 245โ260. MR 331388, DOI 10.1090/S0002-9947-1972-0331388-5
- David Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431โ449. MR 202136, DOI 10.1090/S0002-9947-1966-0202136-1
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771โ782. MR 19, DOI 10.2307/2371335
- Clas Lรถfwall, On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp.ย 291โ338. MR 846457, DOI 10.1007/BFb0075468
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrodโs Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp.ย 153โ231. MR 0281196
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211โ264. MR 174052, DOI 10.2307/1970615
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39โ60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- Stewart B. Priddy, Primary cohomology operations for simplicial Lie algebras, Illinois J. Math. 14 (1970), 585โ612. MR 270364
- Daniel G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411โ418. MR 231919, DOI 10.1016/0021-8693(68)90069-0
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Clarence Wilkerson, The cohomology algebras of finite-dimensional Hopf algebras, Trans. Amer. Math. Soc. 264 (1981), no.ย 1, 137โ150. MR 597872, DOI 10.1090/S0002-9947-1981-0597872-X
Bibliographic Information
- Justin M. Mauger
- Affiliation: Department of Mathematics, Whittier College, Whittier, California 90608
- Address at time of publication: Department of Mathematics and Computer Science, California State University, Channel Islands, Camarillo, California 93012
- Email: jmauger@whittier.edu, justin.mauger@csuci.edu
- Received by editor(s): April 30, 2002
- Received by editor(s) in revised form: April 2, 2003
- Published electronically: November 12, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3301-3323
- MSC (2000): Primary 16E40; Secondary 16S37, 16S30
- DOI: https://doi.org/10.1090/S0002-9947-03-03381-6
- MathSciNet review: 2052951