Infinitely many solutions to fourth order superlinear periodic problems
HTML articles powered by AMS MathViewer
- by Monica Conti, Susanna Terracini and Gianmaria Verzini
- Trans. Amer. Math. Soc. 356 (2004), 3283-3300
- DOI: https://doi.org/10.1090/S0002-9947-03-03514-1
- Published electronically: December 12, 2003
- PDF | Request permission
Abstract:
We present a new min–max approach to the search of multiple $T$–periodic solutions to a class of fourth order equations \[ u^{iv}(t)-c u''(t)=f(t,u(t)),\hspace {5mm}t\in [0,T],\] where $f(t,u)$ is continuous, $T$–periodic in $t$ and satisfies a superlinearity assumption when $|u|\to \infty$. For every $n\in \mathbb {N}$, we prove the existence of a $T$–periodic solution having exactly $2n$ zeroes in $(0,T]$.References
- A.U. Afuwape, J. Mawhin, F. Zanolin, An existence theorem for periodic solutions and applications to some nonlinear ordinary and delay equations, preprint
- Thomas Bartsch and Michel Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\textbf {R}^N$, Arch. Rational Mech. Anal. 124 (1993), no. 3, 261–276. MR 1237913, DOI 10.1007/BF00953069
- D. Bonheure, L. Sanchez, M. Tarallo, S. Terracini, Heteroclinics connections between nonconsecutive equilibria of a fourth order differential equation, Calculus of Variation and PDE’s, to appear
- Julia Chaparova, Existence and numerical approximations of periodic solutions of semilinear fourth-order differential equations, J. Math. Anal. Appl. 273 (2002), no. 1, 121–136. MR 1933020, DOI 10.1016/S0022-247X(02)00216-0
- Monica Conti, Luca Merizzi, and Susanna Terracini, Radial solutions of superlinear equations on $\textbf {R}^N$. I. A global variational approach, Arch. Ration. Mech. Anal. 153 (2000), no. 4, 291–316. MR 1773818, DOI 10.1007/s002050050015
- Monica Conti and Susanna Terracini, Radial solutions of superlinear equations on $\textbf {R}^N$. II. The forced case, Arch. Ration. Mech. Anal. 153 (2000), no. 4, 317–339. MR 1773819, DOI 10.1007/s002050050016
- Monica Conti, Susanna Terracini, and Gianmaria Verzini, Nodal solutions to a class of nonstandard superlinear equations on $\Bbb R^N$, Adv. Differential Equations 7 (2002), no. 3, 297–318. MR 1867689
- Felix L. Garcia, Periodic solutions of 4th order O.D.E, Dynam. Contin. Discrete Impuls. Systems 7 (2000), no. 2, 239–254. MR 1744968
- P. Habets, L. Sanchez, M. Tarallo, S. Terracini, Heteroclinics for a class of fourth order conservative differential equations, Equadiff 10, Prague 2001, CD-ROM Proceedings
- A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990), no. 4, 537–578. MR 1084570, DOI 10.1137/1032120
- J. Mawhin and F. Zanolin, A continuation approach to fourth order superlinear periodic boundary value problems, Topol. Methods Nonlinear Anal. 2 (1993), no. 1, 55–74. MR 1245478, DOI 10.12775/TMNA.1993.030
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- V. J. Mizel, L. A. Peletier, and W. C. Troy, Periodic phases in second-order materials, Arch. Ration. Mech. Anal. 145 (1998), no. 4, 343–382. MR 1664530, DOI 10.1007/s002050050133
- Zeev Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141–175. MR 123775, DOI 10.1007/BF02559588
- L. A. Peletier and W. C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov (EFK) equation: kinks, Differential Integral Equations 8 (1995), no. 6, 1279–1304. MR 1329841
- L. A. Peletier and W. C. Troy, A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation, Topol. Methods Nonlinear Anal. 6 (1995), no. 2, 331–355. MR 1399544, DOI 10.12775/TMNA.1995.049
- L. A. Peletier and W. C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions, SIAM J. Math. Anal. 28 (1997), no. 6, 1317–1353. MR 1474217, DOI 10.1137/S0036141095280955
- L. A. Peletier and W. C. Troy, Multibump periodic travelling waves in suspension bridges, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 3, 631–659. MR 1632819, DOI 10.1017/S0308210500021661
- B.R. Rynne, Global bifurcation for $2m$-th order boundary value problems and infinitely many solutions of superlinear problems, preprint
- D. Smets, J.B. van den Berg, Homoclinic solutions for Swift–Hohenberg and suspension bridge type equations, J. Diff. Eq. 184 (2002), 78–96
- Michael Struwe, Superlinear elliptic boundary value problems with rotational symmetry, Arch. Math. (Basel) 39 (1982), no. 3, 233–240. MR 682450, DOI 10.1007/BF01899529
Bibliographic Information
- Monica Conti
- Affiliation: Dipartimento di Matematica del Politecnico, piazza Leonardo da Vinci, 32 - 20133 Milano (I), Italy
- Email: monica.conti@polimi.it
- Susanna Terracini
- Affiliation: Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milano (I), Italy
- Email: suster@matapp.unimib.it
- Gianmaria Verzini
- Affiliation: Dipartimento di Matematica del Politecnico, piazza Leonardo da Vinci, 32 - 20133 Milano (I), Italy
- Email: gianmaria.verzini@polimi.it
- Received by editor(s): May 25, 2001
- Received by editor(s) in revised form: March 21, 2003
- Published electronically: December 12, 2003
- Additional Notes: This research was supported by MURST project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3283-3300
- MSC (2000): Primary 34B15; Secondary 58E05, 47J10
- DOI: https://doi.org/10.1090/S0002-9947-03-03514-1
- MathSciNet review: 2052950