Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Realizability of modules over Tate cohomology

Authors: David Benson, Henning Krause and Stefan Schwede
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 3621-3668
MSC (2000): Primary 20J06; Secondary 16E40, 16E45, 55S35
Published electronically: December 12, 2003
MathSciNet review: 2055748
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $k$ be a field and let $G$ be a finite group. There is a canonical element in the Hochschild cohomology of the Tate cohomology $\gamma_G\in HH^{3,-1}\hat H^*(G,k)$ with the following property. Given a graded $\hat H^*(G,k)$-module $X$, the image of $\gamma_G$in ${\text{\rm Ext}}^{3,-1}_{\hat H^*(G,k)}(X,X)$ vanishes if and only if $X$ is isomorphic to a direct summand of $\hat H^*(G,M)$ for some $kG$-module $M$.

The description of the realizability obstruction works in any triangulated category with direct sums. We show that in the case of the derived category of a differential graded algebra $A$, there is also a canonical element of Hochschild cohomology $HH^{3,-1}H^*(A)$ which is a predecessor for these obstructions.

References [Enhancements On Off] (What's this?)

  • 1. M. Auslander and S. O. Smalø, Preprojective modules over artin algebras, J. Algebra 66 (1980), 61-122. MR 83a:16039
  • 2. H.-J. Baues, On the cohomology of categories, universal Toda brackets and homotopy pairs, $K$-Theory 11 (1997), no. 3, 259-285. MR 98h:55020
  • 3. H.-J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general linear group, $K$-Theory 3 (1989), no. 4, 307-338. MR 91d:18008
  • 4. H.-J. Baues and A. Tonks, On sum-normalised cohomology of categories, twisted homotopy pairs and universal Toda brackets, Quarterly Journal of Math (Oxford) 47 (1996), no. 188, 405-433. MR 98k:18010
  • 5. A. A. Be{\u{\i}}\kern.15emlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Soc. Math. France, Paris, 1982, pp. 5-171. MR 86g:32015
  • 6. D. J. Benson, Representations and Cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, 1991. MR 92m:20005
  • 7. -, Complexity and varieties for infinite groups, I, J. Algebra 193 (1997), 260-287. MR 99a:20054
  • 8. -, Complexity and varieties for infinite groups, II, J. Algebra 193 (1997), 288-317. MR 99a:20054
  • 9. D. J. Benson and J. F. Carlson, Products in negative cohomology, J. Pure & Applied Algebra 82 (1992), 107-129. MR 93i:20058
  • 10. D. J. Benson and G. Ph. Gnacadja, Phantom maps and purity in modular representation theory, II, Algebras and Representation Theory 4 (2001), 395-404. MR 2002j:20017
  • 11. A. J. Berrick and A. A. Davydov, Splitting of Gysin extensions, Algebr. Geom. Topol. 1 (2001), 743-762. MR 2003a:55021
  • 12. M. Bökstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209-234. MR 94f:18008
  • 13. J. F. Carlson, Modules and group algebras, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1996. MR 97c:20013
  • 14. H. Cartan and S. Eilenberg, Homological algebra, Princeton Mathematical Series, no. 19, Princeton Univ. Press, 1956. MR 17:1040e
  • 15. D. Christensen, B. Keller, and A. Neeman, Failure of Brown representability in derived categories, Topology 40 (2001), 1339-1361.
  • 16. J. Cornick and P. H. Kropholler, Homological finiteness conditions for modules over strongly group-graded rings, Math. Proc. Camb. Phil. Soc. 120 (1996), 43-54. MR 96m:16009
  • 17. -, Homological finiteness conditions for modules over group algebras, J. London Math. Soc. 58 (1998), 49-62. MR 99k:20105
  • 18. P. Deligne, Cohomologie étale, Springer-Verlag, Berlin/New York, Berlin, 1977, Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 $\frac{1}{2}$, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics, Vol. 569. MR 57:3132
  • 19. L. Evens, The cohomology of groups, The Clarendon Press Oxford University Press, New York, 1991, Oxford Science Publications. MR 93i:20059
  • 20. P. Freyd, Stable homotopy, Proceedings of the conference on categorical algebra (La Jolla, 1965), Springer-Verlag, Berlin/New York, 1966, pp. 121-172. MR 35:2280
  • 21. S. I. Gelfand and Yu. I. Manin, Methods of homological algebra, Springer-Verlag, Berlin/New York, 1996. MR 97j:18001
  • 22. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. MR 28:5102
  • 23. François Goichot, Homologie de Tate-Vogel équivariante, J. Pure Appl. Algebra 82 (1992), 39-64. MR 94d:55014
  • 24. D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helvetici 62 (1987), 339-389. MR 89c:16029
  • 25. T. V. Kadeishvili, The algebraic structure in the homology of an ${A}(\infty)$-algebra, Soobshch. Akad. Nauk Gruzin. SSR 108 (1982), no. 2, 249-252 (1983). MR 84k:55009
  • 26. -, The structure of the ${A}(\infty)$-algebra, and the Hochschild and Harrison cohomologies, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 19-27. MR 91a:18016
  • 27. M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479-508. MR 89g:18018
  • 28. B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102. MR 95e:18010
  • 29. -, Introduction to $A$-infinity algebras and modules, Homology, Homotopy and Applications 3 (2001), 1-35.
  • 30. P. H. Kropholler, Hierarchical decompositions, generalized Tate cohomology, and groups of type $FP_\infty$, Proc. Edin. Conf. Geometric Group Theory 1993 (A. Duncan, N. Gilbert, and J. Howie, eds.), Cambridge University Press, 1994. MR 96c:20097
  • 31. H. R. Margolis, Spectra and the Steenrod algebra, North Holland, Amsterdam, 1983. MR 86j:55001
  • 32. G. Mislin, Tate cohomology for arbitrary groups via satellites, Topology and its Applications 56 (1994), 293-300. MR 95c:20072
  • 33. A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236. MR 96c:18006
  • 34. -, Triangulated categories, Princeton University Press, Princeton, NJ, 2001. MR 2001k:18010
  • 35. J. Rickard, Idempotent modules in the stable category, J. London Math. Soc. 178 (1997), 149-170. MR 98d:20058
  • 36. C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin/New York, 1984. MR 87f:16027
  • 37. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121-154. MR 89m:18013
  • 38. J. D. Stasheff, Homotopy associativity of ${H}$-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293-312. MR 28:1623
  • 39. J. Tate, Nilpotent quotient groups, Topology 3 (1964), 109-111, suppl. 1. MR 28:4032
  • 40. J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque (1996), no. 239, xii+253 pp. (1997), with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis. MR 98c:18007
  • 41. C. A. Weibel, Introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, 1994. MR 95f:18001
  • 42. G. W. Whitehead, Recent advances in homotopy theory, American Mathematical Society, Providence, R.I., 1970, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 5. MR 46:8208

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20J06, 16E40, 16E45, 55S35

Retrieve articles in all journals with MSC (2000): 20J06, 16E40, 16E45, 55S35

Additional Information

David Benson
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

Henning Krause
Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Address at time of publication: Institut für Mathematik, Universität Paderborn, D-33095 Paderborn, Germany

Stefan Schwede
Affiliation: SFB 478 Geometrische Strukturen in der Mathematik, Westfälische Wilhelms-Universität Münster, Hittorfstr. 27, 48149 Münster, Germany

Received by editor(s): April 5, 2002
Received by editor(s) in revised form: April 25, 2003
Published electronically: December 12, 2003
Additional Notes: The first author was partly supported by NSF grant DMS-9988110
Article copyright: © Copyright 2003 American Mathematical Society