The best constant of the Moser-Trudinger inequality on $\textbf {S}^2$
HTML articles powered by AMS MathViewer
- by Yuji Sano
- Trans. Amer. Math. Soc. 356 (2004), 3477-3482
- DOI: https://doi.org/10.1090/S0002-9947-03-03483-4
- Published electronically: November 25, 2003
- PDF | Request permission
Abstract:
We consider the best constant of the Moser-Trudinger inequality on $\textbf {S}^2$ under a certain orthogonality condition. Applying Moser’s calculation, we construct a counterexample to the sharper inequality with the condition.References
- Thierry Aubin, Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Functional Analysis 32 (1979), no. 2, 148–174 (French, with English summary). MR 534672, DOI 10.1016/0022-1236(79)90052-1
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Wei Yue Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463–471. MR 967024, DOI 10.1007/BF01460045
- Akito Futaki and Yasuhiro Nakagawa, Characters of automorphism groups associated with Kähler classes and functionals with cocycle conditions, Kodai Math. J. 24 (2001), no. 1, 1–14. MR 1813712, DOI 10.2996/kmj/1106157289
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- J. Moser, On a nonlinear problem in differential geometry, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 273–280. MR 0339258
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI 10.1007/s002220050176
Bibliographic Information
- Yuji Sano
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Email: ysano@math.titech.ac.jp
- Received by editor(s): March 12, 2003
- Published electronically: November 25, 2003
- Additional Notes: This research was partially supported by the Ministry of Education, Science, Sports and Culture of Japan, Grant-in-Aid for JSPS Fellows, 03340, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3477-3482
- MSC (2000): Primary 34A26; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-03-03483-4
- MathSciNet review: 2055742