$L^p\to L^q$ regularity of Fourier integral operators with caustics
HTML articles powered by AMS MathViewer
- by Andrew Comech
- Trans. Amer. Math. Soc. 356 (2004), 3429-3454
- DOI: https://doi.org/10.1090/S0002-9947-04-03570-6
- Published electronically: April 26, 2004
- PDF | Request permission
Abstract:
The caustics of Fourier integral operators are defined as caustics of the corresponding Schwartz kernels (Lagrangian distributions on $X\times Y$). The caustic set $\Sigma (\mathbf {C})$ of the canonical relation is characterized as the set of points where the rank of the projection $\pi :\mathbf {C}\to X\times Y$ is smaller than its maximal value, $\dim (X\times Y)-1$. We derive the $L^ p(Y)\to L^ q(X)$ estimates on Fourier integral operators with caustics of corank $1$ (such as caustics of type $A_{m+1}$, $m\in \mathbb {N}$). For the values of $p$ and $q$ outside of a certain neighborhood of the line of duality, $q=p’$, the $L^ p\to L^ q$ estimates are proved to be caustics-insensitive. We apply our results to the analysis of the blow-up of the estimates on the half-wave operator just before the geodesic flow forms caustics.References
- V. I. Arnol′d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy and asymptotics of integrals; Translated from the Russian by Hugh Porteous; Translation revised by the authors and James Montaldi. MR 966191, DOI 10.1007/978-1-4612-3940-6
- Philip Brenner, On $L_{p}-L_{p^{\prime } }$ estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. MR 387819, DOI 10.1007/BF01215290
- Philip Brenner, $L_{p}-L_{p’}$-estimates for Fourier integral operators related to hyperbolic equations, Math. Z. 152 (1977), no. 3, 273–286. MR 430872, DOI 10.1007/BF01488969
- Andrew Comech and Scipio Cuccagna, On ${L}^p$ continuity of singular Fourier integral operators, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2453–2476.
- Anthony Carbery, Michael Christ, and James Wright, Multidimensional van der Corput and sublevel set estimates, J. Amer. Math. Soc. 12 (1999), no. 4, 981–1015. MR 1683156, DOI 10.1090/S0894-0347-99-00309-4
- Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domains de $\textbf {R}$, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 559–575 (French). MR 480399, DOI 10.24033/asens.1337
- J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
- J. J. Duistermaat, Fourier integral operators, Progress in Mathematics, vol. 130, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1362544
- Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR 0516965, DOI 10.1090/surv/014
- Allan Greenleaf and Andreas Seeger, Oscillatory and Fourier integral operators with degenerate canonical relations, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), no. Vol. Extra, 2002, pp. 93–141.
- Allan Greenleaf, Andreas Seeger, and Stephen Wainger, Estimates for generalized Radon transforms in three and four dimensions, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 243–254. MR 1771272, DOI 10.1090/conm/251/03873
- Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 388463, DOI 10.1007/BF02392052
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1994. Pseudo-differential operators; Corrected reprint of the 1985 original. MR 1313500
- Jean-Luc Joly, Guy Metivier, and Jeffrey Rauch, Caustics for dissipative semilinear oscillations, Mem. Amer. Math. Soc. 144 (2000), no. 685, viii+72. MR 1682244, DOI 10.1090/memo/0685
- Walter Littman, $L^{p}-L^{q}$-estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 479–481. MR 0358443
- Donald Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19 (1966), 215–250. MR 196254, DOI 10.1002/cpa.3160190207
- Akos Magyar, Estimates for the wave kernel near focal points on compact manifolds, J. Geom. Anal. 11 (2001), no. 1, 119–128. MR 1829351, DOI 10.1007/BF02921957
- Richard B. Melrose and Michael E. Taylor, Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle, Adv. in Math. 55 (1985), no. 3, 242–315. MR 778964, DOI 10.1016/0001-8708(85)90093-3
- D. H. Phong and E. M. Stein, Radon transforms and torsion, Internat. Math. Res. Notices 4 (1991), 49–60. MR 1121165, DOI 10.1155/S1073792891000077
- Andreas Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), no. 3, 685–745. MR 1240601, DOI 10.1215/S0012-7094-93-07127-X
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579, DOI 10.1017/CBO9780511530029
- Hart F. Smith and Christopher D. Sogge, $L^p$ regularity for the wave equation with strictly convex obstacles, Duke Math. J. 73 (1994), no. 1, 97–153. MR 1257279, DOI 10.1215/S0012-7094-94-07304-3
- Andreas Seeger, Christopher D. Sogge, and Elias M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251. MR 1127475, DOI 10.2307/2944346
- Robert S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. MR 256219, DOI 10.1090/S0002-9947-1970-0256219-1
- Mitsuru Sugimoto, A priori estimates for higher order hyperbolic equations, Math. Z. 215 (1994), no. 4, 519–531. MR 1269488, DOI 10.1007/BF02571728
- Mitsuru Sugimoto, Estimates for hyperbolic equations with non-convex characteristics, Math. Z. 222 (1996), no. 4, 521–531. MR 1406266, DOI 10.1007/PL00004265
- Mitsuru Sugimoto, Estimates for hyperbolic equations of space dimension 3, J. Funct. Anal. 160 (1998), no. 2, 382–407. MR 1665291, DOI 10.1006/jfan.1998.3296
- Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
Bibliographic Information
- Andrew Comech
- Affiliation: Department of Mathematics, Duke University, Durham, North Carolina 27708
- Email: comech@math.duke.edu
- Received by editor(s): January 22, 2003
- Published electronically: April 26, 2004
- Additional Notes: This work was supported in part by the NSF under Grants No. 0296036 and 0200880
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3429-3454
- MSC (2000): Primary 35S30
- DOI: https://doi.org/10.1090/S0002-9947-04-03570-6
- MathSciNet review: 2055740