Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity
HTML articles powered by AMS MathViewer
- by José Antonio Gálvez, Antonio Martínez and Francisco Milán
- Trans. Amer. Math. Soc. 356 (2004), 3405-3428
- DOI: https://doi.org/10.1090/S0002-9947-04-03592-5
- Published electronically: April 26, 2004
- PDF | Request permission
Abstract:
In this paper we study a large class of Weingarten surfaces which includes the constant mean curvature one surfaces and flat surfaces in the hyperbolic 3-space. We show that these surfaces can be parametrized by holomorphic data like minimal surfaces in the Euclidean 3-space and we use it to study their completeness. We also establish some existence and uniqueness theorems by studing the Plateau problem at infinity: when is a given curve on the ideal boundary the asymptotic boundary of a complete surface in our family? and, how many embedded solutions are there?References
- J. A. Aledo and J. A. Gálvez, Complete Surfaces in the Hyperbolic Space with a Constant Principal Curvature, to appear in Math. Nachr.
- R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 321–347.
- Pascal Collin, Laurent Hauswirth, and Harold Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math. (2) 153 (2001), no. 3, 623–659. MR 1836284, DOI 10.2307/2661364
- John B. Conway, Functions of one complex variable. II, Graduate Texts in Mathematics, vol. 159, Springer-Verlag, New York, 1995. MR 1344449, DOI 10.1007/978-1-4612-0817-4
- Manfredo P. do Carmo and H. Blaine Lawson Jr., On Alexandrov-Bernstein theorems in hyperbolic space, Duke Math. J. 50 (1983), no. 4, 995–1003. MR 726314, DOI 10.1215/S0012-7094-83-05041-X
- José A. Gálvez, Antonio Martínez, and Francisco Milán, Flat surfaces in the hyperbolic $3$-space, Math. Ann. 316 (2000), no. 3, 419–435. MR 1752778, DOI 10.1007/s002080050337
- Mohammad Ghomi, Gauss map, topology, and convexity of hypersurfaces with nonvanishing curvature, Topology 41 (2002), no. 1, 107–117. MR 1871243, DOI 10.1016/S0040-9383(00)00028-8
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039, DOI 10.1090/mmono/026
- Reuven Harmelin, Locally convex functions and the Schwarzian derivative, Israel J. Math. 67 (1989), no. 3, 367–379. MR 1029910, DOI 10.1007/BF02764954
- M. Kokubu, M. Umehara and K. Yamada, An elementary proof of Small’s formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C), Osaka J. Math. 40 (2003), 697–715.
- Nicholas J. Korevaar, Rob Kusner, William H. Meeks III, and Bruce Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), no. 1, 1–43. MR 1147718, DOI 10.2307/2374738
- Gilbert Levitt and Harold Rosenberg, Symmetry of constant mean curvature hypersurfaces in hyperbolic space, Duke Math. J. 52 (1985), no. 1, 53–59. MR 791291, DOI 10.1215/S0012-7094-85-05204-4
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Zeev Nehari, A property of convex conformal maps, J. Analyse Math. 30 (1976), 390–393. MR 440020, DOI 10.1007/BF02786725
- F. Pacard and F. Pimentel, Attaching handles to Bryant surfaces, preprint (available at http://arXiv.org/math.DG/0112224).
- Christian Pommerenke, Linear-invariante Familien analytischer Funktionen. I, II, Math. Ann. 155 (1964), 108–154; ibid. 156 (1964), 226–262 (German). MR 0168751, DOI 10.1007/BF01363289
- Harold Rosenberg and Ricardo Sa Earp, The geometry of properly embedded special surfaces in $\textbf {R}^3$, e.g., surfaces satisfying $aH+bK=1$, where $a$ and $b$ are positive, Duke Math. J. 73 (1994), no. 2, 291–306. MR 1262209, DOI 10.1215/S0012-7094-94-07314-6
- Harold Rosenberg and Joel Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994), no. 2, 379–409. MR 1293658
- Ricardo Sa Earp and Eric Toubiana, Sur les surfaces de Weingarten spéciales de type minimal, Bol. Soc. Brasil. Mat. (N.S.) 26 (1995), no. 2, 129–148 (French, with English summary). MR 1364263, DOI 10.1007/BF01236989
- Ricardo Sa Earp and Eric Toubiana, Classification des surfaces de type Delaunay, Amer. J. Math. 121 (1999), no. 3, 671–700 (French, with English summary). MR 1738404, DOI 10.1353/ajm.1999.0019
- Ricardo Sa Earp and Eric Toubiana, Symmetry of properly embedded special Weingarten surfaces in $\textbf {H}^3$, Trans. Amer. Math. Soc. 351 (1999), no. 12, 4693–4711. MR 1675186, DOI 10.1090/S0002-9947-99-02511-8
- W. Rossman, M. Umehara and K. Yamada, Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature I, preprint (available at http://arXiv.org/math.DG/0008015).
- A. J. Small, Surfaces of constant mean curvature $1$ in $\textbf {H}^3$ and algebraic curves on a quadric, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1211–1220. MR 1209429, DOI 10.1090/S0002-9939-1994-1209429-2
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532830
- Masaaki Umehara and Kotaro Yamada, Complete surfaces of constant mean curvature $1$ in the hyperbolic $3$-space, Ann. of Math. (2) 137 (1993), no. 3, 611–638. MR 1217349, DOI 10.2307/2946533
- Masaaki Umehara and Kotaro Yamada, A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in $\mathbf R^3$ into the hyperbolic $3$-space, J. Reine Angew. Math. 432 (1992), 93–116. MR 1184761, DOI 10.1515/crll.1992.432.93
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
Bibliographic Information
- José Antonio Gálvez
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Email: jagalvez@ugr.es
- Antonio Martínez
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Email: amartine@ugr.es
- Francisco Milán
- Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
- Email: milan@ugr.es
- Received by editor(s): November 11, 2002
- Published electronically: April 26, 2004
- Additional Notes: This research was partially supported by MCYT-FEDER Grant No. BFM2001-3318 and Junta de Andalucía CEC: FQM0804
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3405-3428
- MSC (2000): Primary 53C42; Secondary 53A35
- DOI: https://doi.org/10.1090/S0002-9947-04-03592-5
- MathSciNet review: 2055739