On the classification of full factors of type III
HTML articles powered by AMS MathViewer
- by Dimitri Shlyakhtenko PDF
- Trans. Amer. Math. Soc. 356 (2004), 4143-4159 Request permission
Abstract:
We introduce a new invariant $\mathscr {S}(M)$ for type III factors $M$ with no almost-periodic weights. We compute this invariant for certain free Araki-Woods factors. We show that Connes’ invariant $\tau$ cannot distinguish all isomorphism classes of free Araki-Woods factors. We show that there exists a continuum of mutually non-isomorphic free Araki-Woods factors, each without almost-periodic weights.References
- Lance Barnett, Free product von Neumann algebras of type $\textrm {III}$, Proc. Amer. Math. Soc. 123 (1995), no. 2, 543–553. MR 1224611, DOI 10.1090/S0002-9939-1995-1224611-7
- A. Connes, Correspondences, unpublished notes.
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115, DOI 10.24033/asens.1247
- A. Connes, Almost periodic states and factors of type $\textrm {III}_{1}$, J. Functional Analysis 16 (1974), 415–445. MR 0358374, DOI 10.1016/0022-1236(74)90059-7
- —, Noncommutative geometry, Academic Press, 1994.
- Kenneth J. Dykema, Free products of finite-dimensional and other von Neumann algebras with respect to non-tracial states, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 41–88. MR 1426835
- Kenneth J. Dykema and Florin Rădulescu, Compressions of free products of von Neumann algebras, Math. Ann. 316 (2000), no. 1, 61–82. MR 1735079, DOI 10.1007/s002080050004
- Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606, DOI 10.1007/978-1-4612-9976-9
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- S. Popa, Correspondences, INCREST preprint, 1986.
- S. Popa and D. Shlyakhtenko, Universal properties of $L(\mathbb {F}_\infty )$ in subfactor theory, MSRI preprint 2000-032, to appear in Acta Math.
- Florin Rădulescu, A one-parameter group of automorphisms of ${\scr L}(F_\infty )\otimes B(H)$ scaling the trace, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1027–1032 (English, with French summary). MR 1168529
- Florin Rădulescu, A type $\textrm {III}_\lambda$ factor with core isomorphic to the von Neumann algebra of a free group, tensor $B(H)$, Astérisque 232 (1995), 203–209. Recent advances in operator algebras (Orléans, 1992). MR 1372534
- Dimitri Shlyakhtenko, Free quasi-free states, Pacific J. Math. 177 (1997), no. 2, 329–368. MR 1444786, DOI 10.2140/pjm.1997.177.329
- Dimitri Shlyakhtenko, Some applications of freeness with amalgamation, J. Reine Angew. Math. 500 (1998), 191–212. MR 1637501, DOI 10.1515/crll.1998.066
- Dimitri Shlyakhtenko, $A$-valued semicircular systems, J. Funct. Anal. 166 (1999), no. 1, 1–47. MR 1704661, DOI 10.1006/jfan.1999.3424
- —, Microstates free entropy and cost of equivalence relations, Duke Math. J. 118 (2003), 375–425.
- Dan Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. II, Invent. Math. 118 (1994), no. 3, 411–440. MR 1296352, DOI 10.1007/BF01231539
- D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), no. 1, 172–199. MR 1371236, DOI 10.1007/BF02246772
- Dan Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices 1 (1998), 41–63. MR 1601878, DOI 10.1155/S107379289800004X
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
Additional Information
- Dimitri Shlyakhtenko
- Affiliation: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095
- MR Author ID: 606307
- ORCID: 0000-0002-0221-7508
- Email: shlyakht@math.ucla.edu
- Received by editor(s): July 21, 2002
- Received by editor(s) in revised form: July 17, 2003
- Published electronically: April 16, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4143-4159
- MSC (2000): Primary 46L10; Secondary 46L54
- DOI: https://doi.org/10.1090/S0002-9947-04-03457-9
- MathSciNet review: 2058841