## On the classification of full factors of type III

HTML articles powered by AMS MathViewer

- by Dimitri Shlyakhtenko PDF
- Trans. Amer. Math. Soc.
**356**(2004), 4143-4159 Request permission

## Abstract:

We introduce a new invariant $\mathscr {S}(M)$ for type III factors $M$ with no almost-periodic weights. We compute this invariant for certain free Araki-Woods factors. We show that Connes’ invariant $\tau$ cannot distinguish all isomorphism classes of free Araki-Woods factors. We show that there exists a continuum of mutually non-isomorphic free Araki-Woods factors, each without almost-periodic weights.## References

- Lance Barnett,
*Free product von Neumann algebras of type $\textrm {III}$*, Proc. Amer. Math. Soc.**123**(1995), no. 2, 543–553. MR**1224611**, DOI 10.1090/S0002-9939-1995-1224611-7 - A. Connes,
*Correspondences*, unpublished notes. - Alain Connes,
*Une classification des facteurs de type $\textrm {III}$*, Ann. Sci. École Norm. Sup. (4)**6**(1973), 133–252 (French). MR**341115**, DOI 10.24033/asens.1247 - A. Connes,
*Almost periodic states and factors of type $\textrm {III}_{1}$*, J. Functional Analysis**16**(1974), 415–445. MR**0358374**, DOI 10.1016/0022-1236(74)90059-7 - —,
*Noncommutative geometry*, Academic Press, 1994. - Kenneth J. Dykema,
*Free products of finite-dimensional and other von Neumann algebras with respect to non-tracial states*, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 41–88. MR**1426835** - Kenneth J. Dykema and Florin Rădulescu,
*Compressions of free products of von Neumann algebras*, Math. Ann.**316**(2000), no. 1, 61–82. MR**1735079**, DOI 10.1007/s002080050004 - Colin C. Graham and O. Carruth McGehee,
*Essays in commutative harmonic analysis*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR**550606**, DOI 10.1007/978-1-4612-9976-9 - Uffe Haagerup,
*The standard form of von Neumann algebras*, Math. Scand.**37**(1975), no. 2, 271–283. MR**407615**, DOI 10.7146/math.scand.a-11606 - Edwin Hewitt and Kenneth A. Ross,
*Abstract harmonic analysis. Vol. I*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR**551496**, DOI 10.1007/978-1-4419-8638-2 - S. Popa,
*Correspondences*, INCREST preprint, 1986. - S. Popa and D. Shlyakhtenko,
*Universal properties of $L(\mathbb {F}_\infty )$ in subfactor theory*, MSRI preprint 2000-032, to appear in Acta Math. - Florin Rădulescu,
*A one-parameter group of automorphisms of ${\scr L}(F_\infty )\otimes B(H)$ scaling the trace*, C. R. Acad. Sci. Paris Sér. I Math.**314**(1992), no. 13, 1027–1032 (English, with French summary). MR**1168529** - Florin Rădulescu,
*A type $\textrm {III}_\lambda$ factor with core isomorphic to the von Neumann algebra of a free group, tensor $B(H)$*, Astérisque**232**(1995), 203–209. Recent advances in operator algebras (Orléans, 1992). MR**1372534** - Dimitri Shlyakhtenko,
*Free quasi-free states*, Pacific J. Math.**177**(1997), no. 2, 329–368. MR**1444786**, DOI 10.2140/pjm.1997.177.329 - Dimitri Shlyakhtenko,
*Some applications of freeness with amalgamation*, J. Reine Angew. Math.**500**(1998), 191–212. MR**1637501**, DOI 10.1515/crll.1998.066 - Dimitri Shlyakhtenko,
*$A$-valued semicircular systems*, J. Funct. Anal.**166**(1999), no. 1, 1–47. MR**1704661**, DOI 10.1006/jfan.1999.3424 - —,
*Microstates free entropy and cost of equivalence relations*, Duke Math. J.**118**(2003), 375–425. - Dan Voiculescu,
*The analogues of entropy and of Fisher’s information measure in free probability theory. II*, Invent. Math.**118**(1994), no. 3, 411–440. MR**1296352**, DOI 10.1007/BF01231539 - D. Voiculescu,
*The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras*, Geom. Funct. Anal.**6**(1996), no. 1, 172–199. MR**1371236**, DOI 10.1007/BF02246772 - Dan Voiculescu,
*A strengthened asymptotic freeness result for random matrices with applications to free entropy*, Internat. Math. Res. Notices**1**(1998), 41–63. MR**1601878**, DOI 10.1155/S107379289800004X - D. V. Voiculescu, K. J. Dykema, and A. Nica,
*Free random variables*, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR**1217253**, DOI 10.1090/crmm/001

## Additional Information

**Dimitri Shlyakhtenko**- Affiliation: Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095
- MR Author ID: 606307
- ORCID: 0000-0002-0221-7508
- Email: shlyakht@math.ucla.edu
- Received by editor(s): July 21, 2002
- Received by editor(s) in revised form: July 17, 2003
- Published electronically: April 16, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 4143-4159 - MSC (2000): Primary 46L10; Secondary 46L54
- DOI: https://doi.org/10.1090/S0002-9947-04-03457-9
- MathSciNet review: 2058841