Dual Radon transforms on affine Grassmann manifolds
HTML articles powered by AMS MathViewer
- by Fulton B. Gonzalez and Tomoyuki Kakehi
- Trans. Amer. Math. Soc. 356 (2004), 4161-4180
- DOI: https://doi.org/10.1090/S0002-9947-04-03471-3
- Published electronically: April 16, 2004
- PDF | Request permission
Abstract:
Fix $0 \leq p < q \leq n-1$, and let $G(p,n)$ and $G(q,n)$ denote the affine Grassmann manifolds of $p$- and $q$-planes in $\mathbb {R}^n$. We investigate the Radon transform $\mathcal {R}^{(q,p)} : C^{\infty } (G(q,n)) \to C^{\infty } (G(p,n))$ associated with the inclusion incidence relation. For the generic case $\dim G(q,n) < \dim G(p,n)$ and $p+q > n$, we will show that the range of this transform is given by smooth functions on $G(p,n)$ annihilated by a system of Pfaffian type differential operators. We also study aspects of the exceptional case $p+q =n$.References
- Fulton B. Gonzalez, Radon transforms on Grassmann manifolds, J. Funct. Anal. 71 (1987), no. 2, 339–362. MR 880984, DOI 10.1016/0022-1236(87)90008-5
- Fulton B. Gonzalez, Bi-invariant differential operators on the Euclidean motion group and applications to generalized Radon transforms, Ark. Mat. 26 (1988), no. 2, 191–204. MR 1050104, DOI 10.1007/BF02386119
- Fulton B. Gonzalez, Invariant differential operators and the range of the Radon $D$-plane transform, Math. Ann. 287 (1990), no. 4, 627–635. MR 1066819, DOI 10.1007/BF01446918
- F. Gonzalez, On the range of the Radon transform on Grassmann manifolds, preprint.
- F. Gonzalez and S. Helgason, Invariant differential operators on Grassmann manifolds, Adv. in Math. 60 (1986), no. 1, 81–91. MR 839483, DOI 10.1016/0001-8708(86)90003-4
- F. Gonzalez and T. Kakehi, Pfaffian Systems and Radon Transforms on Affine Grassmann Manifolds, Math. Ann. 326 (2003), 237-273.
- Eric L. Grinberg, Radon transforms on higher Grassmannians, J. Differential Geom. 24 (1986), no. 1, 53–68. MR 857375
- E. Grinberg and B. Rubin, Radon inversion on Grassmannians via Garding-Gindikin fractional integrals, to appear in Annals of Mathematics.
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.
- Sigurđur Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. MR 172311, DOI 10.1007/BF02391776
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Sigurdur Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, American Mathematical Society, Providence, RI, 1994. MR 1280714, DOI 10.1090/surv/039
- Sigurdur Helgason, The Radon transform, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1723736, DOI 10.1007/978-1-4757-1463-0
- F. John, The ultrahyperbolic differential equation with $4$ independent variables, Duke Math. J. 4 (1938), 300–322.
- Tomoyuki Kakehi, Integral geometry on Grassmann manifolds and calculus of invariant differential operators, J. Funct. Anal. 168 (1999), no. 1, 1–45. MR 1717855, DOI 10.1006/jfan.1999.3459
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
- E. E. Petrov, The Radon transform in matrix spaces and in Grassmann manifolds, Dokl. Akad. Nauk SSSR 177 (1967), 782–785 (Russian). MR 0224048
- F. Richter, On the $k$-dimensional Radon-transform of rapidly decreasing functions, Differential geometry, Peñíscola 1985, Lecture Notes in Math., vol. 1209, Springer, Berlin, 1986, pp. 243–258. MR 863761, DOI 10.1007/BFb0076636
- Boris Rubin, Inversion and characterization of the hemispherical transform, J. Anal. Math. 77 (1999), 105–128. MR 1753484, DOI 10.1007/BF02791259
- B. Rubin, Radon transforms on affine Grassmannians, The Hebrew University of Jerusalem, (2003) preprint.
- Donald C. Solmon, Asymptotic formulas for the dual Radon transform and applications, Math. Z. 195 (1987), no. 3, 321–343. MR 895305, DOI 10.1007/BF01161760
- Robert S. Strichartz, Harmonic analysis on Grassmannian bundles, Trans. Amer. Math. Soc. 296 (1986), no. 1, 387–409. MR 837819, DOI 10.1090/S0002-9947-1986-0837819-6
Bibliographic Information
- Fulton B. Gonzalez
- Affiliation: Department of Mathematics, Tufts University, Medford, Massachusetts 02155-7049
- Email: fulton.gonzalez@tufts.edu
- Tomoyuki Kakehi
- Affiliation: Institute of Mathematics, University of Tsukuba, Ibaraki, Japan 305-8571
- Email: kakehi@math.tsukuba.ac.jp
- Received by editor(s): November 26, 2002
- Received by editor(s) in revised form: May 1, 2003, and July 17, 2003
- Published electronically: April 16, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4161-4180
- MSC (2000): Primary 44A12; Secondary 43A85
- DOI: https://doi.org/10.1090/S0002-9947-04-03471-3
- MathSciNet review: 2058842