Varieties of tori and Cartan subalgebras of restricted Lie algebras
HTML articles powered by AMS MathViewer
- by Rolf Farnsteiner
- Trans. Amer. Math. Soc. 356 (2004), 4181-4236
- DOI: https://doi.org/10.1090/S0002-9947-04-03476-2
- Published electronically: April 16, 2004
- PDF | Request permission
Abstract:
This paper investigates varieties of tori and Cartan subalgebras of a finite-dimensional restricted Lie algebra $(\mathfrak {g},[p])$, defined over an algebraically closed field $k$ of positive characteristic $p$. We begin by showing that schemes of tori may be used as a tool to retrieve results by A. Premet on regular Cartan subalgebras. Moreover, they give rise to principal fibre bundles, whose structure groups coincide with the Weyl groups in case $\mathfrak {g}= \operatorname {Lie}(\mathcal {G})$ is the Lie algebra of a smooth group $\mathcal {G}$. For solvable Lie algebras, varieties of tori are full affine spaces, while simple Lie algebras of classical or Cartan type cannot have varieties of this type. In the final sections the quasi-projective variety of Cartan subalgebras of minimal dimension $\textrm {rk}(\mathfrak {g})$ is shown to be irreducible of dimension $\dim _k\mathfrak {g}-\textrm {rk}(\mathfrak {g})$, with Premet’s regular Cartan subalgebras belonging to the regular locus.References
- Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350–355. MR 220785, DOI 10.1007/BF01109800
- Georgia Benkart, Cartan subalgebras in Lie algebras of Cartan type, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 157–187. MR 832198
- Richard E. Block and Robert Lee Wilson, Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), no. 1, 115–259. MR 931904, DOI 10.1016/0021-8693(88)90216-5
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- S. P. Demuškin, Cartan subalgebras of the simple Lie $p$-algebras $W_{n}$ and $S_{n}$, Sibirsk. Mat. Ž. 11 (1970), 310–325 (Russian). MR 0262310
- —. Cartan subalgebras of simple non-classical Lie algebras. Math. USSR Izv. 6 (1976), 905-924
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Rolf Farnsteiner and Detlef Voigt, On cocommutative Hopf algebras of finite representation type, Adv. Math. 155 (2000), no. 1, 1–22. MR 1789845, DOI 10.1006/aima.2000.1920
- Rolf Farnsteiner and Detlef Voigt, Schemes of tori and the structure of tame restricted Lie algebras, J. London Math. Soc. (2) 63 (2001), no. 3, 553–570. MR 1825975, DOI 10.1017/S0024610701002010
- —. On infinitesimal groups of tame representation type. Math. Z. 244 (2003), 479-513
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- James E. Humphreys, Algebraic groups and modular Lie algebras, Memoirs of the American Mathematical Society, No. 71, American Mathematical Society, Providence, R.I., 1967. MR 0217075
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Jens Carsten Jantzen, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987. MR 899071
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- H. Kurke, G. Pfister, and M. Roczen, Henselsche Ringe und algebraische Geometrie, Mathematische Monographien, Band II, VEB Deutscher Verlag der Wissenschaften, Berlin, 1975 (German). MR 0491694
- J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997. Translated by A. Maciocia. MR 1428426
- H. Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, 1997
- David Mumford, The red book of varieties and schemes, Second, expanded edition, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians; With contributions by Enrico Arbarello. MR 1748380, DOI 10.1007/b62130
- A. A. Premet, Cartan subalgebras of Lie $p$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 788–800, 878–879 (Russian). MR 864177
- A. A. Premet, Regular Cartan subalgebras and nilpotent elements in restricted Lie algebras, Mat. Sb. 180 (1989), no. 4, 542–557, 560 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 2, 555–570. MR 997900, DOI 10.1070/SM1990v066n02ABEH002084
- Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167–171. MR 427303, DOI 10.1007/BF01390008
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627, DOI 10.1007/978-3-642-94985-2
- I. Shafarevich. Basic Algebraic Geometry 1. Springer-Verlag, 1994
- —. Basic Algebraic Geometry 2. Springer-Verlag, 1997
- T. A. Springer, Linear algebraic groups, Progress in Mathematics, vol. 9, Birkhäuser, Boston, Mass., 1981. MR 632835
- Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. MR 929682
- David J. Winter, On the toral structure of Lie $p$-algebras, Acta Math. 123 (1969), 69–81. MR 251095, DOI 10.1007/BF02392385
Bibliographic Information
- Rolf Farnsteiner
- Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany
- MR Author ID: 194225
- Email: rolf@mathematik.uni-bielefeld.de
- Received by editor(s): May 23, 2002
- Received by editor(s) in revised form: July 19, 2003
- Published electronically: April 16, 2004
- Additional Notes: Supported by a Mercator Professorship of the D.F.G
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4181-4236
- MSC (2000): Primary 17B50
- DOI: https://doi.org/10.1090/S0002-9947-04-03476-2
- MathSciNet review: 2058843
Dedicated: Dedicated to Claus Michael Ringel on the occasion of his sixtieth birthday