## Elliptic Apostol sums and their reciprocity laws

HTML articles powered by AMS MathViewer

- by Shinji Fukuhara and Noriko Yui PDF
- Trans. Amer. Math. Soc.
**356**(2004), 4237-4254 Request permission

## Abstract:

We introduce an elliptic analogue of the Apostol sums, which we call elliptic Apostol sums. These sums are defined by means of certain elliptic functions with a complex parameter $\tau$ having positive imaginary part. When $\tau \to i\infty$, these elliptic Apostol sums represent the well-known Apostol generalized Dedekind sums. Also these elliptic Apostol sums are modular forms in the variable $\tau$. We obtain a reciprocity law for these sums, which gives rise to new relations between certain modular forms (of one variable).## References

- Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Abdelmejid Bayad,
*Sommes de Dedekind elliptiques et formes de Jacobi*, Ann. Inst. Fourier (Grenoble)**51**(2001), no. 1, 29–42 (French, with English and French summaries). MR**1821066**, DOI 10.5802/aif.1813 - Bruce C. Berndt,
*Reciprocity theorems for Dedekind sums and generalizations*, Advances in Math.**23**(1977), no. 3, 285–316. MR**429711**, DOI 10.1016/S0001-8708(77)80031-5 - Bruce C. Berndt and Ronald J. Evans,
*On Rademacher’s multiplier system for the classical theta-function*, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 1–7. MR**1284048**, DOI 10.1090/conm/166/01619 - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Ulrich Dieter,
*Cotangent sums, a further generalization of Dedekind sums*, J. Number Theory**18**(1984), no. 3, 289–305. MR**746865**, DOI 10.1016/0022-314X(84)90063-5 - Shigeki Egami,
*An elliptic analogue of the multiple Dedekind sums*, Compositio Math.**99**(1995), no. 1, 99–103. MR**1352569** - Martin Eichler and Don Zagier,
*The theory of Jacobi forms*, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR**781735**, DOI 10.1007/978-1-4684-9162-3 - Shinji Fukuhara,
*Modular forms, generalized Dedekind symbols and period polynomials*, Math. Ann.**310**(1998), no. 1, 83–101. MR**1600031**, DOI 10.1007/s002080050138 - Fukuhara, S.: Dedekind symbols associated with J-forms and their reciprocity law. J. Number Theory
**98**, 236-253 (2003). - Fukuhara, S.: New trigonometric identities and generalized Dedekind sums. Tokyo J. Math.
**26**, 1-14 (2003). - Friedrich Hirzebruch, Thomas Berger, and Rainer Jung,
*Manifolds and modular forms*, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR**1189136**, DOI 10.1007/978-3-663-14045-0 - Hiroshi Ito,
*On a property of elliptic Dedekind sums*, J. Number Theory**27**(1987), no. 1, 17–21. MR**904003**, DOI 10.1016/0022-314X(87)90046-1 - Neal Koblitz,
*Introduction to elliptic curves and modular forms*, 2nd ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR**1216136**, DOI 10.1007/978-1-4612-0909-6 - Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Hans Rademacher and Emil Grosswald,
*Dedekind sums*, The Carus Mathematical Monographs, No. 16, Mathematical Association of America, Washington, D.C., 1972. MR**0357299**, DOI 10.5948/UPO9781614440161 - Robert Sczech,
*Dedekindsummen mit elliptischen Funktionen*, Invent. Math.**76**(1984), no. 3, 523–551 (German). MR**746541**, DOI 10.1007/BF01388472 - Don Zagier,
*Higher dimensional Dedekind sums*, Math. Ann.**202**(1973), 149–172. MR**357333**, DOI 10.1007/BF01351173

## Additional Information

**Shinji Fukuhara**- Affiliation: Department of Mathematics, Tsuda College, Tsuda-machi 2-1-1, Kodaira-shi, Tokyo 187-8577, Japan
- Email: fukuhara@tsuda.ac.jp
**Noriko Yui**- Affiliation: Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
- MR Author ID: 186000
- Email: yui@mast.queensu.ca
- Received by editor(s): September 30, 2002
- Received by editor(s) in revised form: August 7, 2003
- Published electronically: May 10, 2004
- Additional Notes: The first author was partially supported by Grant-in-Aid for Scientific Research (C)12640089, Ministry of Education, Sciences, Sports and Culture, Japan.

The second author was partially supported by a Research Grant from NSERC, Canada. - © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**356**(2004), 4237-4254 - MSC (2000): Primary 11F20; Secondary 33E05, 11F11
- DOI: https://doi.org/10.1090/S0002-9947-04-03481-6
- MathSciNet review: 2058844