Flat holomorphic connections on principal bundles over a projective manifold
HTML articles powered by AMS MathViewer
- by Indranil Biswas and S. Subramanian
- Trans. Amer. Math. Soc. 356 (2004), 3995-4018
- DOI: https://doi.org/10.1090/S0002-9947-04-03567-6
- Published electronically: February 27, 2004
- PDF | Request permission
Abstract:
Let $G$ be a connected complex linear algebraic group and $R_u(G)$ its unipotent radical. A principal $G$–bundle $E_G$ over a projective manifold $M$ will be called polystable if the associated principal $G/R_u(G)$–bundle is so. A $G$–bundle $E_G$ over $M$ is polystable with vanishing characteristic classes of degrees one and two if and only if $E_G$ admits a flat holomorphic connection with the property that the image in $G/R_u(G)$ of the monodromy of the connection is contained in a maximal compact subgroup of $G/R_u(G)$.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Hassan Azad and Indranil Biswas, On holomorphic principal bundles over a compact Riemann surface admitting a flat connection, Math. Ann. 322 (2002), no. 2, 333–346. MR 1893920, DOI 10.1007/s002080100273
- Boudjemaa Anchouche and Indranil Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001), no. 2, 207–228. MR 1828221, DOI 10.1353/ajm.2001.0007
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Shiing Shen Chern, Complex manifolds without potential theory, 2nd ed., Universitext, Springer-Verlag, New York-Heidelberg, 1979. With an appendix on the geometry of characteristic classes. MR 533884, DOI 10.1007/978-1-4684-9344-3
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325, DOI 10.1007/978-3-540-38955-2
- S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1–26. MR 765366, DOI 10.1112/plms/s3-50.1.1
- S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), no. 1, 231–247. MR 885784, DOI 10.1215/S0012-7094-87-05414-7
- Jean-Marc Drézet, Quotients algébriques par des groupes non réductifs et variétés de modules de complexes, Internat. J. Math. 9 (1998), no. 7, 769–819 (French). MR 1651069, DOI 10.1142/S0129167X98000336
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Mark L. Green, Infinitesimal methods in Hodge theory, Algebraic cycles and Hodge theory (Torino, 1993) Lecture Notes in Math., vol. 1594, Springer, Berlin, 1994, pp. 1–92. MR 1335239, DOI 10.1007/978-3-540-49046-3_{1}
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 0396773, DOI 10.1007/978-1-4684-9443-3
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327–404. MR 158024, DOI 10.2307/2373130
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- V. B. Mehta and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984), no. 1, 163–172. MR 751136, DOI 10.1007/BF01389140
- M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540–567. MR 184252, DOI 10.2307/1970710
- A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152. MR 369747, DOI 10.1007/BF01343949
- A. Ramanathan, Moduli for principal bundles over algebraic curves. I, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), no. 3, 301–328. MR 1420170, DOI 10.1007/BF02867438
- A. Ramanathan and S. Subramanian, Einstein-Hermitian connections on principal bundles and stability, J. Reine Angew. Math. 390 (1988), 21–31. MR 953674
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S257–S293. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861491, DOI 10.1002/cpa.3160390714
- A. Weil, Généralisation des fonctions abéliennes, Jour. Math. Pures Appl. 17 (1938), 47–87.
Bibliographic Information
- Indranil Biswas
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- MR Author ID: 340073
- Email: indranil@math.tifr.res.in
- S. Subramanian
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
- Email: subramnn@math.tifr.res.in
- Received by editor(s): April 23, 2003
- Received by editor(s) in revised form: June 24, 2003
- Published electronically: February 27, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 3995-4018
- MSC (2000): Primary 53C07, 32L05, 14J60
- DOI: https://doi.org/10.1090/S0002-9947-04-03567-6
- MathSciNet review: 2058516