Nonexistence of abelian difference sets: Lander’s conjecture for prime power orders
HTML articles powered by AMS MathViewer
- by Ka Hin Leung, Siu Lun Ma and Bernhard Schmidt
- Trans. Amer. Math. Soc. 356 (2004), 4343-4358
- DOI: https://doi.org/10.1090/S0002-9947-03-03365-8
- Published electronically: August 26, 2003
- PDF | Request permission
Abstract:
In 1963 Ryser conjectured that there are no circulant Hadamard matrices of order $>4$ and no cyclic difference sets whose order is not coprime to the group order. These conjectures are special cases of Lander’s conjecture which asserts that there is no abelian group with a cyclic Sylow $p$-subgroup containing a difference set of order divisible by $p$. We verify Lander’s conjecture for all difference sets whose order is a power of a prime greater than 3.References
- K. T. Arasu and S. L. Ma, Abelian difference sets without self-conjugacy, Des. Codes Cryptogr. 15 (1998), no. 3, 223–230. MR 1658602, DOI 10.1023/A:1008323907194
- K. T. Arasu and S. L. Ma, A nonexistence result on difference sets, partial difference sets and divisible difference sets, J. Statist. Plann. Inference 95 (2001), no. 1-2, 67–73. Special issue on design combinatorics: in honor of S. S. Shrikhande. MR 1829099, DOI 10.1016/S0378-3758(00)00278-0
- K. T. Arasu and Siu Lun Ma, Some new results on circulant weighing matrices, J. Algebraic Combin. 14 (2001), no. 2, 91–101. MR 1867226, DOI 10.1023/A:1011903510338
- L. D. Baumert, Difference sets, SIAM J. Appl. Math. 17 (1969), 826–833. MR 255418, DOI 10.1137/0117074
- Leonard D. Baumert, Cyclic difference sets, Lecture Notes in Mathematics, Vol. 182, Springer-Verlag, Berlin-New York, 1971. MR 0282863
- L.D. Baumert, D.M. Gordon: On cyclic difference sets. Preprint.
- P. Erdös, On the distribution of normal point groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 294–297. MR 2000, DOI 10.1073/pnas.26.4.294
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Zhenlei Jia, New necessary conditions for the existence of difference sets without self-conjugacy, J. Combin. Theory Ser. A 98 (2002), no. 2, 312–327. MR 1899628, DOI 10.1006/jcta.2001.3239
- Jeffrey H. Dinitz and Douglas R. Stinson (eds.), Contemporary design theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1992. A collection of surveys; A Wiley-Interscience Publication. MR 1178497
- Dieter Jungnickel and Bernhard Schmidt, Difference sets: an update, Geometry, combinatorial designs and related structures (Spetses, 1996) London Math. Soc. Lecture Note Ser., vol. 245, Cambridge Univ. Press, Cambridge, 1997, pp. 89–112. MR 1700842, DOI 10.1017/CBO9780511526114.010
- L. E. Kopilovich, Difference sets in noncyclic abelian groups, Kibernetika (Kiev) 2 (1989), 20–23, 133 (Russian, with English summary); English transl., Cybernetics 25 (1989), no. 2, 153–157. MR 1009696, DOI 10.1007/BF01070123
- Eric S. Lander, Symmetric designs: an algebraic approach, London Mathematical Society Lecture Note Series, vol. 74, Cambridge University Press, Cambridge, 1983. MR 697566, DOI 10.1017/CBO9780511662164
- K.H. Leung, B. Schmidt: The field descent method. Submitted. Download from http://www.math.uni-augsburg.de/opt/bschmidt/download_pub.html
- Robert A. Liebler, The inversion formula, J. Combin. Math. Combin. Comput. 13 (1993), 143–160. MR 1220608
- S. L. Ma, Planar functions, relative difference sets, and character theory, J. Algebra 185 (1996), no. 2, 342–356. MR 1417375, DOI 10.1006/jabr.1996.0329
- Alexander Pott, Finite geometry and character theory, Lecture Notes in Mathematics, vol. 1601, Springer-Verlag, Berlin, 1995. MR 1440858, DOI 10.1007/BFb0094449
- Herbert John Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, No. 14, Mathematical Association of America; distributed by John Wiley and Sons, Inc., New York, 1963. MR 0150048
- Bernhard Schmidt, Cyclotomic integers and finite geometry, J. Amer. Math. Soc. 12 (1999), no. 4, 929–952. MR 1671453, DOI 10.1090/S0894-0347-99-00298-2
- B. Schmidt: Characters and cyclotomic fields in finite geometry. Springer Lecture Notes in Mathematics 1797 (2002).
- J. Singer: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43 (1938), 377-385.
- Richard J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319–346. MR 179098
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- Ka Hin Leung
- Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore
- Email: matlkh@nus.edu.sg
- Siu Lun Ma
- Affiliation: Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore
- Email: matmasl@nus.edu.sg
- Bernhard Schmidt
- Affiliation: Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
- Email: schmidt@math.uni-augsburg.de
- Received by editor(s): November 13, 2002
- Received by editor(s) in revised form: April 10, 2003
- Published electronically: August 26, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4343-4358
- MSC (2000): Primary 05B10; Secondary 05B20
- DOI: https://doi.org/10.1090/S0002-9947-03-03365-8
- MathSciNet review: 2067122