On the $L_{p}$-Minkowski problem
HTML articles powered by AMS MathViewer
- by Erwin Lutwak, Deane Yang and Gaoyong Zhang
- Trans. Amer. Math. Soc. 356 (2004), 4359-4370
- DOI: https://doi.org/10.1090/S0002-9947-03-03403-2
- Published electronically: December 15, 2003
- PDF | Request permission
Abstract:
A volume-normalized formulation of the $L_{p}$-Minkowski problem is presented. This formulation has the advantage that a solution is possible for all $p\ge 1$, including the degenerate case where the index $p$ is equal to the dimension of the ambient space. A new approach to the $L_{p}$-Minkowski problem is presented, which solves the volume-normalized formulation for even data and all $p\ge 1$.References
- A. D. Aleksandrov, On the theory of mixed volumes. I. Extension of certain concepts in the theory of convex bodies, Mat. Sbornik N.S. 2 (1937), 947–972 (Russian; German summary).
- A. D. Aleksandrov, On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sbornik N.S. 3 (1938), 27–46 (Russian; German summary).
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Eugenio Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. MR 106487
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, DOI 10.1002/cpa.3160370306
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938), 1–31.
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221
- Herman Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math. (2) 96 (1972), 245–276. MR 309021, DOI 10.2307/1970788
- Herman Gluck, Manifolds with preassigned curvature—a survey, Bull. Amer. Math. Soc. 81 (1975), 313–329. MR 367861, DOI 10.1090/S0002-9904-1975-13740-2
- H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci. USA 24 (1938), 104–106.
- H. Lewy, On differential geometry in the large, I (Minkowski’s problem), Trans. Amer. Math. Soc. 43 (1938), 258–270.
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
- E. Lutwak, D. Yang, and G. Zhang, Sharp affine $L_{p}$ Sobolev inequalities, J. Differential Geom. 62 (2002), 17–38.
- E. Lutwak, D. Yang, and G. Zhang, $L_{p}$ John ellipsoids, (manuscript).
- H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198–219.
- H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447–495.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- A. V. Pogorelov, A regular solution of the $n$-dimensional Minkowski problem, Soviet Math. Dokl. 12 (1971), 1192–1196. MR 0284956
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 0478079
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- David Singer, Preassigning curvature of polyhedra homeomorphic to the two-sphere, J. Differential Geometry 9 (1974), 633–638. MR 394697
- Alina Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, DOI 10.1006/aima.2001.2040
- A. Stancu, On the number of solutions to the discrete two-dimensional $L_ 0$-Minkowski problem., Adv. Math. (to appear).
- A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315, DOI 10.1017/CBO9781107325845
- V. Umanskiy, On solvability of the two dimensional $L_{p}$-Minkowski problem, Adv. Math. (to appear).
Bibliographic Information
- Erwin Lutwak
- Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
- Email: elutwak@poly.edu
- Deane Yang
- Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
- ORCID: 0000-0002-4655-1428
- Email: dyang@poly.edu
- Gaoyong Zhang
- Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
- Email: gzhang@poly.edu
- Received by editor(s): May 16, 2001
- Received by editor(s) in revised form: April 16, 2003
- Published electronically: December 15, 2003
- Additional Notes: This research was supported, in part, by NSF Grants DMS–9803261 and DMS–0104363
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4359-4370
- MSC (2000): Primary 52A40
- DOI: https://doi.org/10.1090/S0002-9947-03-03403-2
- MathSciNet review: 2067123