Variation inequalities for the Fejér and Poisson kernels
Authors:
Roger L. Jones and Gang Wang
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 4493-4518
MSC (2000):
Primary 42A24; Secondary 26D05
DOI:
https://doi.org/10.1090/S0002-9947-04-03397-5
Published electronically:
January 13, 2004
MathSciNet review:
2067131
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we show that the -th order variation operator, for both the Fejér and Poisson kernels, are bounded from
to
,
, when
. Counterexamples are given if
.
- 1. Mustafa A. Akcoglu, Roger L. Jones, and Peter O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math. 42 (1998), no. 1, 154–177. MR 1492045
- 2. Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889–935. MR 1645330, https://doi.org/10.1017/S0143385798108349
- 3. Roger L. Jones and Joseph Rosenblatt, Differential and ergodic transforms, Math. Ann. 323 (2002), no. 3, 525–546. MR 1923696, https://doi.org/10.1007/s002080200313
- 4. Kaczmarz, S., Über die Konvergenz der Reihen von Orthogonal-funktionen, Math. Z., 23 (1925) 263-270.
- 5. D. Lépingle, La variation d’ordre 𝑝 des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 4, 295–316 (French). MR 420837, https://doi.org/10.1007/BF00532696
- 6. Jinghua Qian, The 𝑝-variation of partial sum processes and the empirical process, Ann. Probab. 26 (1998), no. 3, 1370–1383. MR 1640349, https://doi.org/10.1214/aop/1022855756
- 7. E. M. Stein, The development of square functions in the work of A. Zygmund, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376. MR 663787, https://doi.org/10.1090/S0273-0979-1982-15040-6
- 8. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- 9. Zygmund, A., Une remarque sur un théorème de M. Kaczmarz Math. Z., 25 (1926) 297-298.
- 10. A. Zygmund, Trigonometric series. Vol. I, II, Cambridge University Press, Cambridge-New York-Melbourne, 1977. Reprinting of the 1968 version of the second edition with Volumes I and II bound together. MR 0617944
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42A24, 26D05
Retrieve articles in all journals with MSC (2000): 42A24, 26D05
Additional Information
Roger L. Jones
Affiliation:
Department of Mathematics, DePaul University, 2320 N. Kenmore, Chicago, Illinois 60614
Email:
rjones@condor.depaul.edu
Gang Wang
Affiliation:
Department of Mathematics, DePaul University, 2320 N. Kenmore, Chicago, Illinois 60614
Email:
gwang@condor.depaul.edu
DOI:
https://doi.org/10.1090/S0002-9947-04-03397-5
Keywords:
Fej\'er kernel,
Poisson kernel,
square functions,
variation,
jump inequalities
Received by editor(s):
August 17, 2001
Received by editor(s) in revised form:
May 13, 2003
Published electronically:
January 13, 2004
Additional Notes:
The first aurthor was partially supported by a grant from the DePaul University Liberal Art and Science research program
The second author was partially supported by NSF grant DMS-0071759
Article copyright:
© Copyright 2004
American Mathematical Society