Radon's inversion formulas
Author:
W. R. Madych
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 4475-4491
MSC (2000):
Primary 44A12, 42B25
DOI:
https://doi.org/10.1090/S0002-9947-04-03404-X
Published electronically:
January 16, 2004
MathSciNet review:
2067130
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Radon showed the pointwise validity of his celebrated inversion formulas for the Radon transform of a function of two real variables (formulas (III) and (III
) in J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. kl. 69 (1917), 262-277) under the assumption that
is continuous and satisfies two other technical conditions. In this work, using the methods of modern analysis, we show that these technical conditions can be relaxed. For example, the assumption that
be in
for some
satisfying
suffices to guarantee the almost everywhere existence of its Radon transform and the almost everywhere validity of Radon's inversion formulas.
- 1. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, https://doi.org/10.1007/BF02792533
- 2. Stanley R. Deans, The Radon transform and some of its applications, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. MR 709591
- 3. S. Helgason, The Radon Transform, Birkhauser, Boston, 1980.
- 4. W. R. Madych, Summability and approximate reconstruction from Radon transform data, Integral geometry and tomography (Arcata, CA, 1989) Contemp. Math., vol. 113, Amer. Math. Soc., Providence, RI, 1990, pp. 189–219. MR 1108655, https://doi.org/10.1090/conm/113/1108655
- 5. W. R. Madych, Tomography, approximate reconstruction, and continuous wavelet transforms, Appl. Comput. Harmon. Anal. 7 (1999), no. 1, 54–100. MR 1699598, https://doi.org/10.1006/acha.1998.0258
- 6. F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. MR 856916
- 7. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl. 69 (1917), 262-277.
- 8. L. A. Shepp and J. B. Kruskal, Computerized tomography, the new medical X-ray technology, Amer. Math. Monthly 85, (1978), 420-439.
- 9. Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. MR 490032, https://doi.org/10.1090/S0002-9904-1977-14406-6
- 10. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- 11. Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- 12. A. Zygmund, Trigonometric series: Vols. I, II, Second edition, reprinted with corrections and some additions, Cambridge University Press, London-New York, 1968. MR 0236587
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 44A12, 42B25
Retrieve articles in all journals with MSC (2000): 44A12, 42B25
Additional Information
W. R. Madych
Affiliation:
Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email:
madych@uconn.edu
DOI:
https://doi.org/10.1090/S0002-9947-04-03404-X
Received by editor(s):
May 12, 2003
Published electronically:
January 16, 2004
Article copyright:
© Copyright 2004
American Mathematical Society