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RADON’S INVERSION FORMULAS

W. R. MADYCH

Abstract. Radon showed the pointwise validity of his celebrated inversion
formulas for the Radon transform of a function f of two real variables (formulas

(III) and (III′) in J. Radon, Über die Bestimmung von Funktionen durch ihre
Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad.
Wiss. Leipzig, Math.-Nat. kl. 69 (1917), 262-277) under the assumption that
f is continuous and satisfies two other technical conditions. In this work, using
the methods of modern analysis, we show that these technical conditions can
be relaxed. For example, the assumption that f be in Lp(R2) for some p
satisfying 4/3 < p < 2 suffices to guarantee the almost everywhere existence of
its Radon transform and the almost everywhere validity of Radon’s inversion
formulas.

1. Introduction

The Radon transform Rf(θ, t), 0 ≤ θ < 2π, −∞ < t < ∞, of a sufficiently
well-behaved scalar valued function f(x) of the variable x = (x1, x2) in the plane
R2 may be defined by

(1) Rf(θ, t) =
∫ ∞
−∞

f(tuθ + svθ)ds,

where uθ = (cos θ, sin θ) and vθ = uθ+π/2 = (− sin θ, cos θ). An inversion formula is
an expression for f(x) in terms of Rf . There are many such expressions involving
various hypotheses on the function f , for example, see [2, 3, 4, 6, 7, 8, 9]; Radon’s
article [7] is reproduced in [3] and an English translation can be found in [2]. One
reason such formulas are of interest is due to applications in computed tomography;
several such applications are described, for instance, in [2, 6, 8, 9].

This note concerns Radon’s inversion formulas [7, formulas III and III′]. Specif-
ically, if

(2) Fx(t) =
1

2π

∫ 2π

0

Rf(θ, 〈x, uθ〉+ t)dθ,

where 〈x, uθ〉 = x1 cos θ + x2 sin θ is the scalar product of x and uθ, then these
formulas are

(3) f(x) = − 1
π

∫ ∞
0

dFx(t)
t

and

(4) f(x) =
1
π

lim
ε→∞

{
Fx(ε)
ε
−
∫ ∞
ε

Fx(t)
t2

dt

}
.
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Radon established the validity of these formulas under the assumptions that

(a) f is continuous,

(b)
∫
R2

|f(x)|
|x| dx is finite, and

(c) for every x in R2

lim
r→∞

∫ 2π

0

f(x+ ruθ)dθ = 0 .

Note that the discussion in [7] indicates that (3) is to be interpreted as

(5) f(x) = − 1
π

lim
ε→0

lim
ρ→∞

∫ ρ

ε

dFx(t)
t

,

where the integral is a standard Riemann Stieltjes integral in the variable t.
While it is clear that mollified or regularized variants of these formulas are valid

for wider classes of functions f , Radon’s result seems to be the strongest found in
the literature involving the properties of f in the inversion procedures (3) and (4).

One purpose of this note is to indicate the degree to which the restrictions (a)-(c)
can be relaxed.

The restriction (b) appears to play an important role in that it guarantees the
existence of (1) almost everywhere. On the other hand, the only role played by
restriction (c) seems to be in establishing the equivalence of (4) and (5). Also,
while condition (a) guarantees that f(x) is well defined at every point x in R2, it
is not essential for the almost everywhere existence of the Radon transform (1) nor
the almost everywhere validity of Radon’s inversion formulas (3) and (4).

In this article we show, among other things, that (4) holds almost everywhere
whenever f is locally in Lp, p > 4/3, and satisfies a condition equivalent to (b).
Furthermore, the requirement that p be greater than 4/3 cannot be relaxed. On
the other hand, if Fx(ε) in the right-hand side of (4) is replaced with Fx(0), then
the restriction on p can be lifted. Concerning (3) or its equivalent, (5), some global
condition on f is required for its validity. We show that the restriction that f be
in Lp(R2), p > 4/3, is sufficient.

We use standard modern mathematical terminology, notation, and conventions
(for example, see [10, 11]) and only remind the reader that f ∗ g denotes the con-
volution of the functions f and g which is defined by

f ∗ g(x) =
∫
R2
f(x− y)g(y)dy

whenever it makes sense.
The precise statement of the main results together with some supporting mate-

rial are presented in Section 2. Details, including various supporting lemmas and
propositions, are given in Section 3. Section 4 is devoted to certain details which
are included for completeness but which are too mundane or tedious to be included
in Section 3.

2. Highlights

Given a locally integrable function f on R2 it is clear that some restriction on its
behavior at infinity is required to guarantee the existence of its Radon transform.
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One such restriction is

(6) ‖f‖LR =
∫
R2

|f(x)|
1 + |x|dx <∞ .

Indeed if f enjoys (6), then Rf(θ, t) is locally integrable on [0, 2π) × R and thus
finite for almost all (θ, t). Furthermore, for non-negative functions f the local
integrability of Rf(θ, t) is equivalent to (6).

For convenience we denote the class of those locally integrable functions which
satisfy condition (6) as LR. Note that Hölder’s inequality implies that f is in LR
whenever it is in Lp(R2) for some p, 1 ≤ p < 2. It may also be interesting to note
that for continuous functions f , condition (6) is equivalent to the restriction labeled
(b) in the Introduction.

Next consider formulas (4) and (5). These formulas are equivalent under the
assumptions that the Riemann Stieltjes integral on on the right-hand side of (5)
makes sense, that integration by parts is valid, and that

(7) lim
t→∞

Fx(t)
t

= 0 .

While these assumptions are clearly valid in the case when f is continuous and com-
pactly supported, they are more difficult to verify under less restrictive conditions.
Indeed, Radon [7] introduced the additional restriction (c) essentially so that (7)
be valid. However, formula (4) by itself can make sense without these assumptions.
For this reason we examine it first.

For convenience we denote the expression parametrized by ε on the right-hand
side of (4) by gε(x). More precisely,

gε(x) =
1
π

{
Fx(ε)
ε
−
∫ ∞
ε

Fx(t)
t2

dt

}
,

where Fx(t) is defined by (2). The fact that for sufficiently well-behaved functions
f the transformation f → gε is translation invariant in x implies that gε is the
convolution of f with some distribution. Indeed, we have the following.

Proposition 1. For every f in LR

(8) gε(x) = kε ∗ f(x),

where

(9) kε(x) = ε−2k (x/ε) ,

(10) k(x) =
1

π2|x|2
√
|x|2 − 1

χ(|x|) ,

and

χ(t) =
{

0 if |t| ≤ 1,
1 if |t| > 1 .

Identity (8) together with the fact the kernel k is integrable and satisfies∫
R2
k(x)dx = 1

imply various convergence results as ε→ 0. We mention the following which follows
from fairly routine calculations but which has an interesting corollary.
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Proposition 2. Suppose f is in LR and f(x) is continuous for all x in some open
set Ω. Then

lim
ε→0

gε(x) = f(x)

for all x in Ω.

The Radon transform of any function f which satisfies the above hypotheses is
well defined and thus Proposition 2 implies that Radon’s inversion formula (2) is
valid for such f at all points x in Ω. In particular we may conclude that Radon’s
hypothesis (c) is not necessary for the validity of his formula (4).

Corollary 1. If f satisfies conditions (a) and (b) in the Introduction, then Rf(θ, t)
is well defined for almost all (θ, t) in [0, 2π) × R and the inversion formula (4) is
valid for all x.

On the other hand the Lp result announced in the Introduction is not as routine
as Proposition 1; namely, it is not an immediate consequence of identity (8) and
well-known almost everywhere convergence results for kε ∗ f such as those outlined
in [10, 11]. The reason for this is that the kernel k has a significant singularity away
from the origin on the circle |x| = 1. Nevertheless the techniques found in [10, 11]
can be used and lead us to consider the maximal function Mkf defined by

Mkf(x) = sup
ε>0
|kε ∗ f(x)|,

where kε is defined by (9) and (10). An application of Bourgain’s theorem [1] con-
cerning the bivariate circular maximal function and Marcinkiewicz’s interpolation
theorem [12, XII.4.6] results in the following.

Proposition 3. If f is in Lp(R2) for some p > 4/3, then Mkf(x) is finite almost
everywhere and

‖Mkf‖Lp(R2) ≤ Cp‖f‖Lp(R2),

where Cp is a constant independent of f .

As a consequence of this proposition we may make the following conclusion.

Proposition 4. If f is in Lp(R2) for some p > 4/3, then

lim
ε→0

kε ∗ f(x) = f(x)

holds for almost all x.

Finally, Proposition 4 allows us to conclude the almost everywhere convergence
result alluded to in the Introduction.

Theorem 1. If f in LR and locally in Lp for some p > 4/3, then Rf(θ, t) is well
defined for almost all (θ, t) in [0, 2π)×R and the inversion formula (4) is valid for
almost all x.

Next we consider the effect of replacing Fx(ε) with Fx(0) in the right-hand side
of formula (4). Let Gε(x) be the analogue of gε(x), namely,

(11) Gε(x) =
1
π

{
Fx(0)
ε
−
∫ ∞
ε

Fx(t)
t2

dt

}
.

Again, the fact that the transformation f → Gε is translation invariant in x implies
that Gε is the convolution of f with some distribution.
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Proposition 5. For every f in LR

(12) Gε(x) = Kε ∗ f(x),

where

(13) Kε(x) = ε−2K (x/ε) ,

(14) K(x) =
1
π2

{
1
|x| −

√
|x|2 − 1
|x|2 χ(x)

}
and χ is the indicator function of {x : |x| > 1} as in Proposition 1.

As in the case with gε considered earlier, representation (12) together with the
properties of the kernel Kε routinely imply various convergence results as ε → 0.
Moreover, the kernel K is significantly better behaved than the k in Proposition 1.
This can be seen by re-expressing K as

K(x) =
1
π2

 1
|x| {1− χ(x)} +

1

|x|2
{
|x|+

√
|x|2 − 1

}χ(x)


and observing that it is a radial function which is monotonically decreasing as a
function of |x|, 0 < |x| < ∞, and K(x) = O(|x|−3) as |x| tends to ∞. These
properties of K allow us to apply well-established results directly; for example see
[10, Theorem 2, p. 62]. In particular we may conclude that

(15) lim
ε→0

Kε ∗ f(x) = f(x)

for almost all x whenever f is in Lp(R2) and 1 ≤ p ≤ ∞. The same reasoning which
allowed us to infer Corollary 1 from Proposition 2 and Theorem 1 from Proposition
4 allows us to use (15) to conclude the following.

Theorem 2. If f is in LR, then Rf(θ, t) is well defined for almost all (θ, t) in
[0, 2π)× R and the inversion formula

(16) f(x) =
1
π

lim
ε→∞

{
Fx(0)
ε
−
∫ ∞
ε

Fx(t)
t2

dt

}
is valid for almost all x.

It may be of some interest to note that Gε(x) may also be expressed as

Gε(x) =
−1
8π2

∫ 2π

0

∫
|t|>ε

∆2
tRf(θ, 〈x, uθ〉)

t2
dtdθ,

where

∆2
tRf(θ, 〈x, uθ〉) = Rf(θ, 〈x, uθ〉+ t)− 2Rf(θ, 〈x, uθ〉) +Rf(θ, 〈x, uθ〉 − t) .

Thus Theorem 2 may be restated as follows.

Corollary 2. If f is in LR, then

(17) f(x) =
−1
8π2

∫ 2π

0

∫ ∞
−∞

∆2
tRf(θ, 〈x, uθ〉)

t2
dtdθ

for almost all x, where the integral in the t variable is interpreted in the principal
value sense.



4480 W. R. MADYCH

Formula (17) was originally derived in [4] by a different method under the as-
sumption that f is continuously differentiable and compactly supported.

Finally we return to formula (5). As was noted earlier, it appears that, in
addition to the conditions in Theorem 1, it may be necessary to impose additional
restrictions on f . Indeed, there are continuous functions f in L1(R2) which do not
enjoy (7) for any x. For such functions integration by parts of the integral on the
right-hand side of (5) is permissible and results in

− 1
π

∫ ρ

ε

dFx(t)
t

= gε(x) − 1
π

Fx(ρ)
ρ

so that in view of Corollary 1 the failure of (7) implies the failure of (5). It fol-
lows that, while the restriction (c) may not be absolutely necessary, some sort of
additional restriction on the behaviour of f(x) for large |x| is required to ensure
condition (7).

Such a restriction can be quite mild. For example, assume that f is in LR. Then
if 2 < p ≤ ∞ and f is in Lp(R2), an application of Hölder’s inequality shows that
Fx(t) is continuous and (7) is valid for all x. Hence for such f we may conclude
that

(18) kε ∗ f(x) = gε(x) = − 1
π

lim
ρ→∞

∫ ρ

ε

dFx(t)
t

for all x. Furthermore, by applying maximal function methods similar to those
used to obtain Proposition 4, that is, by considering the maximal function

sup
t>0

|Fx(t)|
t

,

it is possible to show that if p > 4/3 and f is in Lp(R2), then for almost all x both
Fx(t) is continuous in t and identity (7) is valid. This implies (18) for such x and,
in view of Proposition 4, Radon’s inversion formula.

Theorem 3. Suppose p > 4/3 and f is in LR ∩ Lp(R2). Then Rf(θ, t) is well
defined for almost all (θ, t) in [0, 2π)×R and the inversion formula (5) is valid for
almost all x.

We remind the reader that if 1 ≤ p < 2, then LR ⊃ Lp(R2) so that LR∩Lp(R2)
= Lp(R2). Thus in the case 4/3 < p < 2 mentioned in the abstract, the hypothesis
on f in the above theorem reduces to f ∈ Lp(R2).

The lower bound on the parameter p in Theorems 1 and 3 is sharp in the sense
that if p ≤ 4/3, there are functions f in Lp(R2) which are non-negative and such
that

lim sup
ε→0

gε(x) =∞

for all x in R2. Also, examples show that continuity and condition (6) are not
enough to ensure (7). These and related examples are considered in the next section.

3. Details

3.1. Fx(t) and condition (6). To see the significance of condition (6) suppose f(x)
is a continuous function with compact support on R2. Then the Radon transform
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Rf(θ, t) is a continuous function on the cylinder [0, 2π)×R and, using an appropriate
change of variables, expression Fx(t) defined by (3) can be re-expressed as

(19) 2πFx(t) = 2
∫
|y|>|t|

f(x− y)√
|y|2 − t2

dy .

Identity (19) can be found in [7] in the case x = 0 and follows in the general case
from translation invariance; see also [6]. An explicit derivation can be found in [5,
p. 83].

Setting x = 0 and integrating both sides of (19) over the interval (−δ, δ) with
respect to the variable t results in

(20)
∫ δ

−δ

∫ 2π

0

Rf(θ, t)dθdt = 4
∫
R2
f(y)h(y/δ)dy

so that

(21)
∫ δ

−δ

∫ 2π

0

|Rf(θ, t)|dθdt ≤ 4
∫
R2
|f(y)|h(y/δ)dy

for every positive number δ, where

h(x) =
{

π/2 if |x| ≤ 1,
arcsin(1/|x|) if |x| > 1 .

Since 0 < c ≤ (1 + |x|)h(x) ≤ C < ∞ for all x, inequality (21) and Fubini Tonelli
theorems allow us to conclude that Rf is locally integrable whenever f satisfies con-
dition (6), in other words, whenever f is in LR. Furthermore, for positive functions
f relation (20) implies that condition (6) is equivalent to the local integrability of
Rf .

3.2. Propositions 1 and 2 and related results. Identity (19) also implies
Proposition 1. Simply replace Fx(t) with the right-hand side of (19) in the def-
inition of gε(x), interchange orders of integration, and integrate out the t variable.
For more explicit details see [5, Sec. 3.2].

Proposition 2 is a routine consequence of Proposition 1. To see this let Ω0 be a
compact subset of Ω whose interior is not empty and write f(x) = f0(x) + f1(x),
where

f0(x) =
{
f(x) if x ∈ Ω0,

0 otherwise,
and verify that

lim
ε→0

kε ∗ f0(x) = f0(x) = f(x) and lim
ε→0

kε ∗ f1(x) = 0

whenever x is in the interior of Ω0. Since every x in Ω is an element of the interior
of a compact subset of Ω, the desired result follows.

3.3. Fx(t) when f is in Lp(R2), p > 2. Because a significant part of the analysis
required to obtain Proposition 3 is analogous to that required to make sense of the
Riemann Stieltjes integral in formula (5) when f is not necessarily continuous and
compactly supported, we now turn to a closer examination of Fx(t).

Notice that (19) can be re-expressed as

π
Fx(t)
t

= φt ∗ f(x),
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where

φt(x) = t−2φ(x/t),

φ(x) =
1√
|x|2 − 1

χ(x),

and χ(x) is the indicator function of {x : |x| > 1} as in Proposition 1.
In what follows it is convenient to express φ(x) as a sum

(22) φ(x) = ψ(x) + λ(x),

where

ψ(x) =
{
φ(x) if |x| ≤ 2,

0 if |x| > 2,

and λ(x) = φ(x) − ψ(x). Thus

φt ∗ f(x) = ψt ∗ f(x) + λt ∗ f(x),

where ψt(x) = t−2ψ(x/t) and λt(x) = t−2λ(x/t).

Proposition 6. Suppose p > 2 and f is in Lp(R2). Then for every x in R2

(i) ψt ∗ f(x) is a continuous function of t, 0 < t <∞,
(ii) (a) if p <∞ or

(b) if p =∞ and f is also in LR,
then

lim
t→∞

ψt ∗ f(x) = 0 .

Proof. Because of translation invariance it suffices to prove this proposition in the
case x = 0. We do so for the sake of notational convenience.

To see (i) take any positive t0 and t and, because ψ is in Lq(R2) where 1
p + 1

q = 1,
write

|ψt ∗ f(0)− ψt0 ∗ f(0)| ≤ ‖ψt − ψt0‖Lq(R2)‖f‖Lp(R2) .

Statement (i) now follows from

lim
t→t0
‖ψt − ψt0‖Lq(R2) = 0 .

Statement (ii)(a) is an immediate consequence of

|ψt ∗ f(0)| ≤ t−2/p‖ψ‖Lq(R2)‖f‖Lp(R2)

which follows from Hölder’s inequality and ‖ψt‖Lq(R2) = t−2/p‖ψ‖Lq(R2).
The proof of statement (ii)(b) is only slightly more complicated. To see it take

any positive ε, choose a positive δ so that∫
1<|x|≤1+δ

1√
|x|2 − 1

dx <
ε

2‖f‖L∞(R2)
,

and write
ψt ∗ f(0) = I1 + I2,

where

I1 =
∫
t<|x|≤(1+δ)t

ψt(x)f(x)dx and I2 =
∫

(1+δ)t<|x|≤2t

ψt(x)f(x)dx .
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Now, in view of our choice of δ and the fact that f is in L∞(R2), it is clear that
|I1| < ε/2. On the other hand,

|I2| ≤
1
t

∫
(1+δ)t<|x|≤2t

|x/t|√
|x/t|2 − 1

|f(x)|
|x| dx,≤ 1

t

C√
δ

∫
t<|x|≤2t

|f(x)|
|x| dx,

and it is clear, because f is in LR, that |I2| < ε/2 whenever t is sufficiently large.
So we may conclude that |ψt ∗ f(0)| < ε whenever t is sufficiently large, which is
the desired result. �

In the case p =∞ it should be clear from the proof that the additional condition
f ∈ LR is sufficient but not necessary to obtain the conclusion of statement (ii).
However some sort of decay of f(x) for large |x| is necessary since, for instance,
ψt ∗ f(x) is constant whenever f is. For example, the condition

lim
r→∞

f(ruθ) = 0 uniformly in θ

is also sufficient.

Proposition 7. If f is in LR, then for every x in R2 the convolution λt ∗ f(x) is
a continuous function of t, 0 < t <∞, and

lim
t→0

λt ∗ f(x) = 0 .

Proof. As in the above argument we consider the case x = 0.
Write

|λt ∗ f(0)− λt0 ∗ f(0)| ≤ I(t, t0)‖f‖LR,
where I(t, t0) is the L∞(R2) norm of (1+ |x|)(λt(x)−λt0(x)) in the x variable. The
continuity statement follows from the fact that

lim
t→t0

I(t, t0) = 0 .

The remaining statement follows from

|λt ∗ f(0)| ≤ I(t)‖f‖LR,

where I(t) is the L∞(R2) norm of (1 + |x|)λt(x) in the x variable and the fact that

‖λt‖L∞(R2) ≤
1
t2

and

sup
x∈R2

|x|λt(x) = sup
{x: |x|>2t}

1
t

|x/t|√
|x/t|2 − 1

≤ 2
t
.

�

The above propositions allow us to conclude that if p > 2 and f is in Lp(R2)∩LR,
then Fx(t) is a continuous function of t, 0 < t < ∞, for every x. Thus for all x
in R2, the Riemann Stieltjes integral in (5) is well defined and integration by parts
results in ∫ ρ

ε

dFx(t)
t

=
Fx(ρ)
ρ
− Fx(ε)

ε
+
∫ ρ

ε

Fx(t)
t2

dt .

These propositions also allow us to conclude that for such f relation (7) is valid for
all x. Summarizing gives us the following.
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Proposition 8. Suppose p > 2 and f is in Lp(R2) ∩ LR. Then for every x in R2

the function Fx(t) is a continuous function of t, 0 < t <∞, and

− 1
π

lim
ρ→∞

∫ ρ

ε

dFx(t)
t

= gε(x) = kε ∗ f(x) .

3.4. Fx(t) when f is in Lp(R2), p ≤ 2. In the case p ≤ 2, indicated by the title of
this subsection, matters are not quite as nice because, recalling the decomposition
(22), ψ is not in Lq(R2), where 1

p + 1
q = 1, so that the relatively routine techniques

involving Hölder’s inequality used in the previous subsection fail for ψt ∗ f(x). We
must use another tactic and, as suggested by the techniques described in [10, 11, 12],
consider the maximal function

(23) Mψf(x) = sup
t>0

∫
R2
ψt(x − y)|f(y)|dy .

Proposition 9. If p > 4/3 and f is in Lp(R2), then Mψf(x) is finite for almost
all x and

‖Mψf‖Lp(R2) ≤ Cp‖f‖Lp(R2),

where Cp is a constant which depends only on p.

This proposition is a consequence of a bound on yet another maximal function
Tδf(x) defined by

(24) Tδf(x) = sup
t>0

∫
1≤|y|≤1+δ

|f(x+ ty)|dy .

Lemma 1. If f is in Lp(R2) for some p, 1 ≤ p ≤ ∞, then Tδf(x) is finite almost
everywhere. If 1 < p ≤ ∞, then Tδf(x) is in Lp(R2) and

(25) ‖Tδf‖Lp(R2) ≤ Cp,δ‖f‖Lp(R2),

where Cp,δ is a constant which depends on p and δ but is independent of f . Specif-
ically for 0 < δ ≤ 1

(26) Cp,δ ≤ cp
{
δ(1−1/p)(2−ε) if 1 < p ≤ 2,

δ if p > 2,

where cp is a constant which depends only on p and the first inequality is valid for
all positive ε.

Proof. Note that

(27) Tδf(x) ≤ CMf(x),

where

(28) Mf(x) = sup
t>0

1
πε2

∫
|y|≤t

|f(x− y)|dy

is the classical bivariate Hardy-Littlewood maximal function and C is a constant
which is independent of δ if 0 < δ ≤ 1. Inequality (27) together with properties of
Mf(x) imply the first two assertions of the lemma.

To see (26) let

Af(x) = sup
t>0

∫ 2π

0

|f(x+ tuθ)|dθ
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and recall Bourgain’s result [1], that is, if f is in Lp(R2) for p > 2, then Af(x) is
finite almost everywhere and

(29) ‖Af‖Lp(R2) ≤ Cp‖f‖Lp(R2),

where the constant Cp depends only on p. Clearly

(30) Tδf(x) ≤ CδAf(x),

where Cδ =
∫ 1+δ

1 rdr so that

(31) Cδ ≤ 2δ if 0 < δ ≤ 1 .

Inequalities (29), (30), and (31) imply (26) in the case p > 2.
To see (26) in the case 1 < p ≤ 2 we may and do assume ε < 1. Use the

fact implied by (27) that the transformation f → Tδf is of weak type (1,1) with
constant C0, the bound (26) in the case p > 2, and the interpolation theorem of
Marcinkiewicz [12, XII.4.6] to obtain the bound

(32) Cp,δ ≤ CC1−θ
0 Cθp0,δ,

where C and C0 are independent of δ, p0 > 2, and θ satisfies
1
p

= 1− θ +
θ

p0
.

This means that

θ =
1− 1

p

1− 1
p0

so that the choice
p0 = 2 +

ε

1− ε
implies the desired result and completes the proof of the lemma. �

To see the proposition let Ωj = {x : 1 + 2−j < |x| ≤ 1 + 21−j} and write∫
R2
ψt(x− y)|f(y)|dy =

∫
R2
ψ(y)|f(x− ty)|dy

=
∞∑
j=1

∫
Ωj

ψ(y)|f(x− ty)|dy

≤
∞∑
j=1

2j/2
∫

Ωj

|f(x− ty)|dy

so it is clear that

(33) Mψf(x) ≤
∞∑
j=1

2j/2Tδjf(x),

where δj = 21−j . The lemma implies that

(34) ‖Mψf‖Lp(R2) ≤ Cp

{ ∞∑
1

2j/2γj

}
‖f‖Lp(R2),

where

γj =
{

2−j(1−1/p)(2−ε) if 1 < p ≤ 2,
2−j if p > 2



4486 W. R. MADYCH

and ε can be chosen to be any positive number. By choosing ε sufficiently small,
the series in (34) converges when p > 4/3. Thus (33) and (34) imply Proposition 9
so its proof is complete.

As a consequence of Proposition 9 we have the following.

Proposition 10. If 4/3 < p <∞ and f is in Lp(R2), then for almost all x in R2

the convolution ψt ∗ f(x) is a continuous function of t, 0 < t <∞, and

lim
t→∞

ψt ∗ f(x) = 0 .

Finally, using reasoning similar to that at the end of the last subsection, we may
conclude the following.

Proposition 11. Suppose that 4/3 < p < 2 and f is in Lp(R2) or that p = 2 and
f is in Lp(R2)∩LR. Then for almost all x in R2 the function Fx(t) is a continuous
function of t, 0 < t <∞, and

− 1
π

lim
ρ→∞

∫ ρ

ε

dFx(t)
t

= gε(x) = kε ∗ f(x) .

3.5. Propositions 3 and 4 and Theorems 1 and 3. To see Proposition 3 note
that

(35) k(x) ≤ C
{
ψ(x) +

χ(x/2)
|x|3

}
,

where ψ(x) is the function in decomposition (22) and χ(x) is the indicator function
of {x : |x| > 1} as in Proposition 1. Because the radial majorant of the second
term on the right, namely the function of x defined by

sup
{y:|y|>|x|}

χ(y/2)
|y|3 ,

is integrable over R2, we may conclude that

(36) Mkf(x) ≤ C{Mψf(x) +Mf(x)},
where C is a constant independent of f , Mψf(x) is the maximal function defined
by (23), and Mf(x) is the classical Hardy-Littlewood maximal function defined
by (28). In view of (36) Proposition 3 is a consequence of Proposition 9 and the
corresponding property of Mf(x).

Proposition 4 follows from Proposition 3 in the same way that the Lebesgue
differentiation theorem for integrals of functions f in Lp follows from the properties
of Mf(x). For more details see Subsection 4.1 or [10].

Theorem 1 follows from Propositions 2 and 4. To see this assume f satisfies the
hypothesis of the theorem and write

kε ∗ f(x) = kε ∗ f0(x) + kε ∗ f1(x),

where f1(x) = f(x)χ(x/ρ), ρ > 0, with χ(x) as above and f0(x) = f(x) − f1(x).
Then Proposition 2 implies that

lim
ε→0

kε ∗ f1(x) = 0 for all x in Bρ = {x : |x| < ρ}

while Proposition 4 implies that

lim
ε→0

kε ∗ f0(x) = f0(x) = f(x) for almost all x in Bρ .
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Since every x in R2 is in Bρ for some positive ρ it follows that for almost all x in
R2 both

lim
ε→0

kε ∗ f(x) = f(x)

and Radon’s inversion formula (4) are valid.
Theorem 3 of course follows from Propositions 4, 8, and 11.

3.6. Examples. The examples below show the following:
• that the restriction on p in Theorems 1 and 3 and in the supporting propo-

sitions cannot be relaxed,
• that there are continuous functions f for which (4) is valid for all x while

(5) fails for all x, and
• that there are functions f for which both (4) and (5) are valid for almost

all x while Radon’s condition (c) fails for all x.
These examples are based on the following observation.

Lemma 2. If ψ is the function defined by decomposition (22) and f is any non-
negative radial function, then

ψ|x| ∗ f(x) ≥ c

|x|
√
|x|+ 1

∫
D

|y|−1/2f(y)dy,

where D = {y : |y| < min(|x|, 1)} and c is a constant independent of f and x.

Since ψ(x) ≤ 4k(x) this lemma remains valid with ψ replaced with k.
Consider the function h(x) defined by the formula

(37) h(x) =
{
|x|−3/2 |log |x||−1 if |x| ≤ 1/2,

0 if |x| > 1/2 .

Clearly h is in Lp(R2) for p ≤ 4/3. However, using Lemma 2 to estimate k|x| ∗h(x)
from below, it is also clear that both

(38) ψ|x| ∗ h(x) =∞ and k|x| ∗ h(x) =∞,
so that for every x in R2 both

Mψh(x) =∞ and Mk ∗ h(x) =∞ .

Proposition 12. Suppose that

f(x) =
∞∑
n=1

2−nh(x− xn),

where h(x) is defined by (37) and where {xn} is a countable dense subset of R2.
Then f is in Lp(R2) for 1 ≤ p ≤ 4/3 and

lim sup
ε→0

kε ∗ f(x) =∞

for every point x in R2.

Next, suppose that α and ε are real parameters satisfying 0 < α < 2 and
0 < ε < 1. Let hα,ε(x) be a continuous non-negative radial function which is
monotonically decreasing as a function of |x| and satisfies

hα,ε(x) =

 ε−α if |x| ≤ ε,
|x|−α if ε < |x| ≤ 1,

0 if |x| ≥ 3/2 .
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Routine calculations show that

(39)
∫
R2
|hα,ε(x)|pdx ≤ Cα,p


ε2−αp if αp > 2,

(1 + | log ε|) if αp = 2,
1 if αp < 2 ,

(40)
∫
R2
|x|−1/2hα,ε(x)dx ≥ Cα

 ε3/2−α if α > 3/2,
(1 + | log ε|) if α = 3/2,

1 if α < 3/2 ,

and, if |x| > 2,

(41)
1

2π

∫ 2π

0

hα,ε(x − |x|uθ)dθ ≥
Cα
|x|

 ε1−α if α > 1,
(1 + | log ε|) if α = 1,

1 if α < 1 .

Define fα(x) via

(42) fα(x) =
∞∑
n=1

hα,εn(x− xn)
n2

,

where {xn} is a sequence of points in R2 which satisfy |xn| = 4n. The specific
values of the parameters {εn} will be chosen later.

Note that fα(x) is a non-negative continuous function on R2 and in view of (39)

(43)
∫
R2
|fα(x)|pdx <∞ if α < 2/p .

In particular this means that fα is not only in LR but also in L1(R2) for all values
of the parameter α in the range 0 < α < 2.

Proposition 13. Suppose that fα(x) is defined by (42), 3/2 < α < 2, and εn =
2n/(3/2−α) , n = 1, 2, . . . . Then

lim sup
t→∞

ψt ∗ fα(x) =∞

for every point x in R2.

Note that the functions fα in the above proposition satisfy the hypothesis of
Proposition 2, so that Radon’s inversion formula (4) is valid for such functions for
all x in R2. However the conclusion of the above proposition implies that inversion
formula (5) fails for such functions for all x in R2.

Proposition 14. Suppose that fα(x) is defined by (42), 1 < α < 2, and εn =
2n/(1−α), n = 1, 2, . . . . Then

lim sup
t→∞

∫ 2π

0

fα(x+ tuθ)dθ =∞

for every point x in R2.

Again, note that the functions fα in the above proposition satisfy the hypothesis
of Proposition 2 so that Radon’s inversion formula (4) is valid for such functions
for all x in R2. Moreover, if α < 3/2 and 4/3 < p < 2/α, then the functions fα
are in Lp(Rn) so that in view of Theorem 3 Radon’s inversion formula (5) is also
valid for almost all x in R2. However, the above proposition implies that Radon’s
condition (c) fails for every x.
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4. More details

4.1. Proposition 10. Proposition 10 follows from Proposition 9 essentially in the
same way that Proposition 4 follows from Proposition 3. For the sake of complete-
ness we outline the argument.

First, without loss of any generality, we may and do assume that the function f
is real valued. Next, adapting mutatis mutandis the argument found in [10], define

Ω0f(x) = sup
0<t0<∞

| lim sup
t→t0

ψt ∗ f(x)− lim inf
t→t0

ψt ∗ f(x)| ,

Ω1f(x) = lim sup
t→∞

|ψt ∗ f(x)| ,

and observe the following:
• Ω0f(x) ≤ 2Mψf(x) and Ω1f(x) ≤ Mψf(x) so, in view of Proposition 9, if
p > 4/3 and f is in Lp(R2), then for any positive ε

meas{x : Ωif(x) > ε} ≤ C

εp
‖f‖pLp(R2) , i = 0, 1,

where C is a constant independent of f .
• If f0 is continuous and compactly supported, then Ω0f0(x) = 0 and Ω1f0(x)

= 0 for all x in R2. Thus

Ωif ≤ Ωi(f − f0)(x) + Ωi(f0) = Ωi(f − f0)(x) , i = 0, 1.

Now suppose that 4/3 < p ≤ 2 and f is in Lp(R2). Then in view of the above
observations, for any positive ε and any continuous and compactly supported f0 we
may write

meas{x : Ωif(x) > ε} ≤ C

εp
‖f − f0‖pLp(R2) , i = 0, 1.

Since such an f0 may be chosen so that ‖f − f0‖Lp(R2) is arbitrarily small, we may
conclude that

meas{x : Ωif(x) > 0} = 0 , i = 0, 1.

This is the desired result.

4.2. Lemma 2. To see Lemma 2 recall that

ψt(x) =
1

t
√
|x|2 − t2

if 1 < |x/t| ≤ 2

and is = 0 otherwise. Also note that if f(x) is a radial function, then so is ψt ∗ f(x)
and thus

ψt ∗ f(x) = ψt ∗ f((|x|, 0)) .

Next observe that with t = |x|, y = (y1, y2) and x = (|x|, 0) we may write

|x− y|2 − t2 = |y|2 − 2|x|y1

= y2
1 + y2

2 + 2|x||y1| if y1 ≤ 0

≤ (1 + 2|x|)|y1|+ |y2| if |y| ≤ 1

≤ (1 + 2|x|)(|y1|+ |y2|)
≤ 4(1 + |x|)|y|
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and, upon sketching a plot of the support of ψ|x|(x− y) as a function y = (y1, y2),
see that

ψ|x|(x− y) ≥ 1
2|x|

√
|x|+ 1

1√
|y|

whenever y is in D1 = {y = (y1, y1) : y1 ≤ 0 and |y| ≤ min(|x|, 1)}. Hence if f is a
non-negative radial function, then

ψ|x| ∗ f(x) ≥
∫
D1

ψ|x|(x− y)f(y)dy, ≥ c
∫
D

|y|−1/2

|x|
√
|x|+ 1

f(y)dy,

where D = {y : |y| < min(|x|, 1)}. The last inequality follows from the lower
bound on ψ(x− y) and the radial symmetry of the resulting integrand.

4.3. Propositions 12, 13, and 14. To see Proposition 12 note that

kε ∗ f(x) ≥ 2−nkε ∗ h(x− xn)

which, in view of (38), is ∞ for ε = |x− xn|. Since {xn} is dense in R2, choosing a
subsequence {xnj} which converges to x and setting εnj = |x− xnj |, we see that

lim
nj→∞

εnj = 0 and kεnj ∗ f(x) =∞ for each εnj .

This implies Proposition 12.
The proofs of Propositions 13 and 14 follow pretty much the same pattern.
To see Proposition 13 write

ψt ∗ fα(x) ≥ n−2ψt ∗ hα,εn(x− xn)

and, in view of Lemma 2,

ψ|x−xn| ∗ hα,εn(x− xn) ≥ c1
|x− xn|3/2

∫
|y|<1

|y|−1/2hα,εn(y)dy ≥ c2 2n

n3/2

whenever |xn| = 4n is sufficiently large, where c1 and c2 are positive constants
independent of x and n. Thus by choosing tn = |x − xn|, it is clear that tn → ∞
as n→∞ and that

lim
tn→∞

ψtn ∗ fα(x) =∞

which implies the desired result.
To see Proposition 14 note that∫ 2π

0

fα(x+ |x− xn|uθ)dθ ≥ n−2

∫ 2π

0

hα,εn(x− xn + |x− xn|uθ)dθ ≥
c 2n

n3

for sufficiently large |xn| = 4n. As above, choosing tn = |x − xn|, it is clear that
tn →∞ as n→∞ and that

lim
tn→∞

∫ 2π

0

fα(x+ tnuθ)dθ =∞

which implies the desired result.
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Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl. 69 (1917), 262-
277.

[8] L. A. Shepp and J. B. Kruskal, Computerized tomography, the new medical X-ray technology,
Amer. Math. Monthly 85, (1978), 420-439.

[9] K. T. Smith, D. C. Solmon, and S. L. Wagner, Practical and mathematical aspects of the
problem of reconstructing a function from radiographs, Bull. AMS 83, (1977), 1227-1270.
MR 58:9394a

[10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, Princeton, N.J., 1970. MR 44:7280

[11] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton Univ. Press, Princeton, N.J., 1993. MR 95c:42002

[12] A. Zygmund, Trigonometric Series, Second edition, Volumes I and II combined, Cambridge
Univ. Press, Cambridge, 1968. MR 38:4882

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-

3009

E-mail address: madych@uconn.edu

http://www.ams.org/mathscinet-getitem?mr=88f:42036
http://www.ams.org/mathscinet-getitem?mr=86a:44003
http://www.ams.org/mathscinet-getitem?mr=92i:44001
http://www.ams.org/mathscinet-getitem?mr=2000g:44003
http://www.ams.org/mathscinet-getitem?mr=88m:44008
http://www.ams.org/mathscinet-getitem?mr=58:9394a
http://www.ams.org/mathscinet-getitem?mr=44:7280
http://www.ams.org/mathscinet-getitem?mr=95c:42002
http://www.ams.org/mathscinet-getitem?mr=38:4882

	1. Introduction
	2. Highlights
	3. Details
	3.1. Fx(t) and condition (6)
	3.2. Propositions 1 and 2 and related results
	3.3. Fx(t) when f is in Lp(R2), p>2
	3.4. Fx(t) when f is in Lp(R2), p 2
	3.5. Propositions 3 and 4 and Theorems 1 and 3
	3.6. Examples

	4. More details
	4.1. Proposition 10
	4.2. Lemma 2
	4.3. Propositions 12, 13, and 14

	References

