On the Harnack inequality for a class of hypoelliptic evolution equations
Authors:
Andrea Pascucci and Sergio Polidoro
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 4383-4394
MSC (2000):
Primary 35K57, 35K65, 35K70
DOI:
https://doi.org/10.1090/S0002-9947-04-03407-5
Published electronically:
January 16, 2004
MathSciNet review:
2067125
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a direct proof of the Harnack inequality for a class of degenerate evolution operators which contains the linearized prototypes of the Kolmogorov and Fokker-Planck operators. We also improve the known results in that we find explicitly the optimal constant of the inequality.
- 1. Giles Auchmuty and David Bao, Harnack-type inequalities for evolution equations, Proc. Amer. Math. Soc. 122 (1994), no. 1, 117–129. MR 1219716, https://doi.org/10.1090/S0002-9939-1994-1219716-X
- 2. E. Barucci, S. Polidoro, and V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci. 11 (2001), no. 3, 475–497. MR 1830951, https://doi.org/10.1142/S0218202501000945
- 3. Huai Dong Cao and Shing-Tung Yau, Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields, Math. Z. 211 (1992), no. 3, 485–504. MR 1190224, https://doi.org/10.1007/BF02571441
- 4. S. CHANDRESEKHAR, Stochastic problems in physics and astronomy, Rev. Modern Phys., 15 (1943), pp. 1-89. MR 4:248i
- 5. Sydney Chapman and T. G. Cowling, The mathematical theory of nonuniform gases, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases; In co-operation with D. Burnett; With a foreword by Carlo Cercignani. MR 1148892
- 6. W.-L. CHOW, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), pp. 98-105. MR 1:313d
- 7. James J. Duderstadt and William R. Martin, Transport theory, John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication. MR 551868
- 8. Nicola Garofalo and Ermanno Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), no. 2, 775–792. MR 998126, https://doi.org/10.1090/S0002-9947-1990-0998126-5
- 9. J. HADAMARD, Extension à l'équation de la chaleur d'un théorème de A. Harnack, Rend. Circ. Mat. Palermo (2), 3 (1954), pp. 337-346 (1955). MR 16:930a
- 10. Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, https://doi.org/10.1007/BF02392081
- 11. S. D. Īvasishen and O. G. Voznyak, On the fundamental solutions of the Cauchy problem for a class of degenerate parabolic equations, Mat. Metodi Fiz.-Mekh. Polya 41 (1998), no. 2, 13–19 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., J. Math. Sci. (New York) 99 (2000), no. 5, 1533–1540. MR 1710034, https://doi.org/10.1007/BF02674176
- 12. L. P. Kupcov, The fundamental solutions of a certain class of elliptic-parabolic second order equations, Differencial′nye Uravnenija 8 (1972), 1649–1660, 1716 (Russian). MR 0315290
- 13. L. P. Kupcov, On parabolic means, Dokl. Akad. Nauk SSSR 252 (1980), no. 2, 296–301 (Russian). MR 571952
- 14. E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 1, 29–63. Partial differential equations, II (Turin, 1993). MR 1289901
- 15. Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, https://doi.org/10.1007/BF02399203
- 16. Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, https://doi.org/10.1007/BF02392539
- 17. A. PASCUCCI, Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc., 355 (2003), pp. 901-924.
- 18. B. PINI, Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico, Rend. Sem. Mat. Univ. Padova, 23 (1954), pp. 422-434. MR 16:485c
- 19. Sergio Polidoro, Uniqueness and representation theorems for solutions of Kolmogorov-Fokker-Planck equations, Rend. Mat. Appl. (7) 15 (1995), no. 4, 535–560 (1996) (English, with English and Italian summaries). MR 1387312
- 20. I. M. Sonin, A class of degenerate diffusion processes, Teor. Verojatnost. i Primenen 12 (1967), 540–547 (Russian, with English summary). MR 0215367
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K57, 35K65, 35K70
Retrieve articles in all journals with MSC (2000): 35K57, 35K65, 35K70
Additional Information
Andrea Pascucci
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
Email:
pascucci@dm.unibo.it
Sergio Polidoro
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
Email:
polidoro@dm.unibo.it
DOI:
https://doi.org/10.1090/S0002-9947-04-03407-5
Received by editor(s):
May 6, 2003
Published electronically:
January 16, 2004
Additional Notes:
This work was supported by the University of Bologna, Funds for selected research topics
Article copyright:
© Copyright 2004
American Mathematical Society