On the Harnack inequality for a class of hypoelliptic evolution equations
HTML articles powered by AMS MathViewer
- by Andrea Pascucci and Sergio Polidoro
- Trans. Amer. Math. Soc. 356 (2004), 4383-4394
- DOI: https://doi.org/10.1090/S0002-9947-04-03407-5
- Published electronically: January 16, 2004
- PDF | Request permission
Abstract:
We give a direct proof of the Harnack inequality for a class of degenerate evolution operators which contains the linearized prototypes of the Kolmogorov and Fokker-Planck operators. We also improve the known results in that we find explicitly the optimal constant of the inequality.References
- Giles Auchmuty and David Bao, Harnack-type inequalities for evolution equations, Proc. Amer. Math. Soc. 122 (1994), no. 1, 117–129. MR 1219716, DOI 10.1090/S0002-9939-1994-1219716-X
- E. Barucci, S. Polidoro, and V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci. 11 (2001), no. 3, 475–497. MR 1830951, DOI 10.1142/S0218202501000945
- Huai Dong Cao and Shing-Tung Yau, Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields, Math. Z. 211 (1992), no. 3, 485–504. MR 1190224, DOI 10.1007/BF02571441
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4
- Sydney Chapman and T. G. Cowling, The mathematical theory of nonuniform gases, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases; In co-operation with D. Burnett; With a foreword by Carlo Cercignani. MR 1148892
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- James J. Duderstadt and William R. Martin, Transport theory, A Wiley-Interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 551868
- Nicola Garofalo and Ermanno Lanconelli, Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type, Trans. Amer. Math. Soc. 321 (1990), no. 2, 775–792. MR 998126, DOI 10.1090/S0002-9947-1990-0998126-5
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- S. D. Īvasishen and O. G. Voznyak, On the fundamental solutions of the Cauchy problem for a class of degenerate parabolic equations, Mat. Metodi Fiz.-Mekh. Polya 41 (1998), no. 2, 13–19 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., J. Math. Sci. (New York) 99 (2000), no. 5, 1533–1540. MR 1710034, DOI 10.1007/BF02674176
- L. P. Kupcov, The fundamental solutions of a certain class of elliptic-parabolic second order equations, Differencial′nye Uravnenija 8 (1972), 1649–1660, 1716 (Russian). MR 0315290
- L. P. Kupcov, On parabolic means, Dokl. Akad. Nauk SSSR 252 (1980), no. 2, 296–301 (Russian). MR 571952
- E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), no. 1, 29–63. Partial differential equations, II (Turin, 1993). MR 1289901
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- A. Pascucci, Hölder regularity for a Kolmogorov equation, Trans. Amer. Math. Soc., 355 (2003), pp. 901–924.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Sergio Polidoro, Uniqueness and representation theorems for solutions of Kolmogorov-Fokker-Planck equations, Rend. Mat. Appl. (7) 15 (1995), no. 4, 535–560 (1996) (English, with English and Italian summaries). MR 1387312
- I. M. Sonin, A class of degenerate diffusion processes, Teor. Verojatnost. i Primenen. 12 (1967), 540–547 (Russian, with English summary). MR 0215367
Bibliographic Information
- Andrea Pascucci
- Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
- Email: pascucci@dm.unibo.it
- Sergio Polidoro
- Affiliation: Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
- Email: polidoro@dm.unibo.it
- Received by editor(s): May 6, 2003
- Published electronically: January 16, 2004
- Additional Notes: This work was supported by the University of Bologna, Funds for selected research topics
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4383-4394
- MSC (2000): Primary 35K57, 35K65, 35K70
- DOI: https://doi.org/10.1090/S0002-9947-04-03407-5
- MathSciNet review: 2067125