Spécialisation de la $R$-équivalence pour les groupes réductifs
HTML articles powered by AMS MathViewer
- by Philippe Gille
- Trans. Amer. Math. Soc. 356 (2004), 4465-4474
- DOI: https://doi.org/10.1090/S0002-9947-04-03443-9
- Published electronically: January 13, 2004
- PDF | Request permission
Abstract:
Soit $G/k$ un groupe réductif défini sur un corps $k$ de caractéristique distincte de $2$. On montre que le groupes des classes de $R$–équivalence de $G(k)$ ne change pas lorsque l’on passe de $k$ au corps des séries de Laurent $k((t))$, c’est-à-dire que l’on a un isomorphisme naturel $G(k)/R \overset {\sim }{\longrightarrow } G\bigl ( k((t)) \bigr )/R$.
Abstract. Let $G/k$ be a reductive group defined over a field of characteristic $\not =2$. We show that the group of $R$–equivalence for $G(k)$ is invariant by the change of fields $k((t))/k$ given by the Laurent series. In other words, there is a natural isomorphism $G(k)/R \overset {\sim }{\longrightarrow } G\bigl ( k((t)) \bigr )/R$.
References
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI 10.1007/s002220050141
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- F. Bruhat and J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197–376 (French). MR 756316
- Vladimir Chernousov and Alexander Merkurjev, $R$-equivalence in spinor groups, J. Amer. Math. Soc. 14 (2001), no. 3, 509–534. MR 1824991, DOI 10.1090/S0894-0347-01-00365-4
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148–205. MR 878473, DOI 10.1016/0021-8693(87)90026-3
- C. De Concini and T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), no. 2-3, 273–300. Dedicated to the memory of Claude Chevalley. MR 1712864, DOI 10.1007/BF01237359
- S. Encinas et H. Hauser, Strong resolution of singularities in characteristic zero, preprint (2002), ArXiv: math.AG/0211423.
- Philippe Gille, La $R$-équivalence sur les groupes algébriques réductifs définis sur un corps global, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 199–235 (1998) (French). MR 1608570
- Hermann Weyl, Invariants, Duke Math. J. 5 (1939), 489–502. MR 30
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- János Kollár, Rationally connected varieties over local fields, Ann. of Math. (2) 150 (1999), no. 1, 357–367. MR 1715330, DOI 10.2307/121107
- J. Kollár, Specialization of zero-cycles, prépublication (2002), math.AG/0205148.
- Yu. I. Manin, Cubic forms, 2nd ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. Algebra, geometry, arithmetic; Translated from the Russian by M. Hazewinkel. MR 833513
- Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197–202 (English, with French summary). MR 667750
- M. S. Raghunathan, Principal bundles admitting a rational section, Invent. Math. 116 (1994), no. 1-3, 409–423. MR 1253199, DOI 10.1007/BF01231567
- Elisabetta Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), no. 1, 165–171. MR 884653, DOI 10.1007/BF01457285
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- Jacques Tits, Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), no. 2, 648–677. MR 1058572, DOI 10.1016/0021-8693(90)90201-X
- V. E. Voskresenskiĭ, The reduced Whitehead group of a simple algebra, Uspehi Mat. Nauk 32 (1977), no. 6(198), 247–248 (Russian). MR 0498583
Bibliographic Information
- Philippe Gille
- Affiliation: UMR 8628 du C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
- Email: gille@math.u-psud.fr
- Received by editor(s): April 9, 2003
- Received by editor(s) in revised form: May 9, 2003
- Published electronically: January 13, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4465-4474
- MSC (2000): Primary 20G15, 14L40
- DOI: https://doi.org/10.1090/S0002-9947-04-03443-9
- MathSciNet review: 2067129