TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 356, Number 11, Pages 4559-4600

S 0002-9947(04)03463-4

Article electronically published on May 28, 2004

VALUE GROUPS, RESIDUE FIELDS,
AND BAD PLACES OF RATIONAL FUNCTION FIELDS

FRANZ-VIKTOR KUHLMANN

ABSTRACT. We classify all possible extensions of a valuation from a ground
field K to a rational function field in one or several variables over K. We
determine which value groups and residue fields can appear, and we show
how to construct extensions having these value groups and residue fields. In
particular, we give several constructions of extensions whose corresponding
value group and residue field extensions are not finitely generated. In the
case of a rational function field K(z) in one variable, we consider the relative
algebraic closure of K in the henselization of K (z) with respect to the given
extension, and we show that this can be any countably generated separable-
algebraic extension of K. In the “tame case”, we show how to determine this
relative algebraic closure. Finally, we apply our methods to power series fields
and the p-adics.

1. INTRODUCTION

In this paper, we denote a valued field by (K,v), its value group by vK, and
its residue field by Kv. When we write (L|K,v) we mean a field extension L|K
endowed with a valuation v on L and its restriction on K.

In many recent applications of valuation theory, valuations on algebraic function
fields play a main role. To mention only a short and incomplete list of applications
and references: local uniformization and resolution of singularities ([C], [CP], [S],
IKU3|, [KKUI], [KKU2]), model theory of valued fields ([KUTI], [KU2], [KU4]),
study of curves via constant reduction ([GMP1], [GMP2], [PL]), classification of all
extensions of an ordering from a base field to a rational function field ([KUKMZ]),
and Grobner bases ([SW], [MOSWT], [MOSW?2]).

In many cases, a basic tool is the classification of all extensions of a valuation from
a base field to a function field. As the classification of all extensions of a valuation
from a field to an algebraic extension is taken care of by general ramification theory
(ct. [E], [KU2]), a crucial step in the classification is the case of rational function
fields. Among the first papers describing valuations on rational function fields
systematically were [M] and [MS]. Since then, an impressive number of papers have
been written about the construction of such valuations and about their properties;

the following list is by no means exhaustive: [AP], [APZ1]-[APZ3|, [KH1]-[KHI0],
[KHGI]-[KHGE], [KHPR], MO1], [MO2], [MOSWT1], [O1]-[03], [PP], [V]. From the

paper [APZ3] the reader may get a good idea of how MacLane’s original approach
has been developed further. Since then, the notion of “minimal pairs” has been
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adopted and studied by several authors (see, e.g., [KHPR]). In the present paper,
we will develop a new approach to this subject. It serves to determine in full
generality which value groups and which residue fields can possibly occur. This
question has recently played a role in two other papers:

1) In [KU3], we prove the existence of “bad places” on rational function fields
of transcendence degree > 2. These are places whose value group is not finitely
generated, or whose residue field is not finitely generated over the base field. The
existence of such places has been shown by MacLane and Schilling ([MS]) and by
Zariski and Samuel ([ZS], Chapter VI, §15, Examples 3 and 4). However, our
approach in [KU3] using Hensel’s Lemma seems to be new, and the present paper
contains a further refinement of it. The following theorem of [MS|] and [ZS] is a
special case of a result which we will prove by this refinement:

Theorem 1.1. Let K be any field. Take T’ to be any non-trivial ordered abelian
group of finite rational rank p, and k to be any countably generated extension of K
of finite transcendence degree T. Choose any integer n > p+ 7. Then the rational
function field in n variables over K admits a valuation whose restriction to K is
trivial, whose value group is I' and whose residue field is k.

In particular, every additive subgroup of Q and every countably generated alge-
braic extension of K can be realized as value group and residue field of a place of
the rational function field K (x,y)|K whose restriction to K is the identity.

The rational rank of an abelian group I" is the dimension of the Q-vector space
Q®zI'. We denote it by rrT". It is equal to the cardinality of any maximal set of
rationally independent elements in T.

Bad places on function fields are indeed bad: the value group or residue field not
being finitely generated constitutes a major hurdle for the attempt to prove local
uniformization or other results which are related to resolution of singularities (cf.
[CP]). Another hurdle is the phenomenon of defect which can appear when the
residue characteristic of a valued field is positive, even if the field itself seems to
be quite simple. Indeed, we will prove in Section .3, and by a different method in
Section B.5t

Theorem 1.2. Let K be any algebraically closed field of positive characteristic.
Then there exists a valuation v on the rational function field K (x,y)|K whose re-
striction to K is trivial, such that (K (x,y),v) admits an infinite chain of immediate
Galois extensions of degree p and defect p.

An extension (L'|L,v) of valued fields is called immediate if the canonical
embeddings of vL in vL’ and of Lv in L'v are surjective (which we will express
by writing v’ = vL and L'v = Lv). For a finite immediate extension (L'|L,v),
its defect is equal to its degree if and only if the extension of v from L to L’ is
unique (or equivalently, L’|L is linearly disjoint from some (or every) henselization
of (L,v)).

One of the examples we shall construct for the proof of the above theorem is
essentially the same as in Section 7 of [CP], but we use a different and more di-
rect approach (while the construction in [CP| is more intricate, since it serves an
additional purpose).

2) In [KUKMZ], the classification of all extensions of an ordering to a rational
function field is considered in the context of power series fields, and the above
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question is partially answered in this setting. In the present paper, we will consider
the question without referring to power series fields (see Theorem below).
During the preparation of [KUKMZ]), we found that the construction of an exten-
sion of the valuation v from K to the rational function field K (x) with prescribed
value group vK (z) and residue field K (z)v is tightly connected with the determi-
nation of the relative algebraic closure of K in a henselization K (z)" of K(z) with
respect to v. In earlier papers, we have introduced the name “henselian function
field” for the henselizations of valued function fields (although these are not function
fields, unless the valuation is trivial). In the same vein, one can view the relative
algebraic closure as being the (exact) constant field of the henselian function field
(K(x)"|K,v). We will call it the implicit constant field of (K (z)/K,v) and
denote it by IC (K (x)| K, v). Clearly, the henselization K (z)" depends on the valu-

ation which has been fixed on the algebraic closure K (z). So whenever we will talk
a/l_f)\(?l/lt the implicit constant field, we will do it in a setting where the valuation on
K () has been fixed. However, since the henselization L" of any valued field (L, v)
is unique up to valuation-preserving isomorphism over L, the implicit constant field
is unique up to valuation-preserving isomorphism over K. If Ly is a subfield of L,
then L" contains a (unique) henselization of Ly. Hence, IC (K (z)|K,v) contains
a henselization of K and is itself henselian. Further, L”|L is a separable-algebraic
extension; thus, K (x)" K is separable. Therefore, IC (K (z)|K,v) is a separable-
algebraic extension of K.

In the present paper, we answer the above question on value groups and residue
fields by determining which prescribed separable-algebraic extensions of K can be
realized as implicit constant fields. The following result shows in particular that
every countably generated separable-algebraic extension of a henselian base field
can be so realized:

Theorem 1.3. Let (Ki|K,v) be a countably generated separable-algebraic exten-
sion of non-trivially valued fields. Then there is an extension of v from Ky to the

algebraic closure K1(x) = K(x) of the rational function field K(x) such that, upon

taking henselizations in (K (z),v),
(1.1) K" = IC(K(2)|K,v) .

In Section we will introduce a basic classification (“value-transcendental”
— “residue-transcendental” — “valuation-algebraic”) of all possible extensions of v
from K to K(z). In Section B we introduce a class of extensions (K (z)|K,v)
for which IC (K (z)|K,v) = K" holds. Building on this, we prove Theorem
in Section B-5] In fact, we prove a more detailed version: we show under which
additional conditions the extension can be chosen in a prescribed class of the basic
classification. This yields the following;:

Theorem 1.4. Take any valued field (K, v), an ordered abelian group extension Ty
of vK such that Ty/vK is a torsion group, and an algebraic extension ko of Kv.
Further, take T' to be the abelian group I'g ® Z endowed with any extension of the
ordering of T'g .

Assume first that To/vK and ko|Kv are finite. If v is trivial on K, then assume
in addition that ko|Kwv is simple. Then there is an extension of v from K to the
rational function field K (x) which has value group T' and residue field ko. If v is
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non-trivial on K, then there is also an extension which has value group Ty and as
residue field a rational function field in one variable over ky .

Now assume that v is non-trivial on K and that Ty /vK and ko|Kv are countably
generated. Suppose that at least one of them is infinite or that (K,v) admits an
immediate transcendental extension. Then there is an extension of v from K to
K (x) which has value group Ty and residue field ko.

Here is the converse:

Theorem 1.5. Let (K (x)|K,v) be a valued rational function field. Then one and
only one of the following three cases holds:

1) vK(x) ~To@Z, where To|vK is a finite extension of ordered abelian groups,
and K (z)v|Kwv is finite;

2) vK(x)/vK is finite, and K(x)v is a rational function field in one variable
over a finite extension of Kv;

3) vK(x)/vK is a torsion group and K (z)v|Kwv is algebraic.
In all cases, vK (x)/vK is countable and K (x)v|Kv is countably generated.

In 2), we use a fact which was proved by J. Ohm [O2] and is known as the
“Ruled Residue Theorem”: If K (z)v|Kwv is transcendental, then K (x)v is a rational
function field in one variable over a finite extension of Kv. For the countability
assertion, see Theorem 2.9

In Section B4 we give an explicit description of all possible extensions of v from
K to K(z) (Theorem BTTI).

Theorem [C4 is used in the proof of our next theorem:

Theorem 1.6. Let (K,v) be any valued field, n, p, T non-negative integers, n > 1,
T # {0} an ordered abelian group extension of vK such that T'/vK is of rational
rank p, and k|Kv a field extension of transcendence degree T.

Part A. Suppose that n > p+ 7 and that

A1) T/vK and k|Kv are countably generated, and

A2) T/vK or k|Kv is infinite.

Then there is an extension of v to the rational function field K(x1,...,2,) in n
variables such that
(1.2) vK(z1,...,2n) =T and K(z1,...,z5)v = k.

Part B. Suppose that n > p+ 7 and that

B1) T/vK and k|Kv are finitely generated,

B2) if v is trivial on K, n = p+ 7 and p = 1, then k is a simple algebraic
extension of a rational function field in T variables over Kv (or of Kv itself if
7 =0), or a rational function field in one variable over a finitely generated field
extension of Kv of transcendence degree T — 1,

B3) if n =7, then k is a rational function field in one variable over a finitely
generated field extension of Kv of transcendence degree T — 1, and

B4) if p=0 =, then there is an immediate extension of (K,v) which is either
infinite separable-algebraic or of transcendence degree at least n.

Then again there is an extension of v to K(z1,...,xy,) such that (L2) holds.

Theorem [[I] is the special case of Part A for v trivial on K. The following
converse holds.
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Theorem 1.7. Let n > 1, and let v be a valuation on the rational function field
F = K(z1,...,z,). Set p=rrvF/vK and 7 = trdeg Fv|Kv. Thenn > p+ T,
vF/vK is countable, and Fv|Kv is countably generated.

Ifn=p+r, thenvF/vK is finitely generated and Fv|Kv is a finitely generated
field extension. Assertions B2) and B3) of Theorem hold for k = Fuv, and if
p =0 =7, then there is an immediate extension of (f(, v) of transcendence degree n
(for any extension of v from K to K ).

There is a gap between Theorem [[.6] and this converse for the case of p = 0 =
7, as the former talks about K and the latter talks about the algebraic closure
K of K. This gap can be closed if (K, v) has residue characteristic 0 or is a
Kaplansky field; because the maximal immediate extension of such fields is unique
up to isomorphism, one can show that K can be replaced by K. But in the case
where (K,v) is not such a field, we do not know enough about the behaviour
of maximal immediate extensions under algebraic field extensions. This question
should be considered in future research.

A valuation on an ordered field is called convex if the associated valuation ring
is convex. For the case of ordered fields with convex valuations, we can derive from
Theorem [ the existence of convex extensions of the valuation with prescribed
value groups and residue fields in the frame given by Theorem [, provided that a
natural additional condition for the residue fields is satisfied:

Theorem 1.8. In the setting of Theorem[1.0, assume in addition that K is ordered
and that v is conver w.r.t. the ordering. Assume further that k is equipped with an
extension of the ordering induced by < on Kv. Then this extension can be lifted
through v to K(x1,...,2,) in such a way that the lifted ordering extends <. It
follows that v is convex w.r.t. this lifted ordering on K(x1,...,x,).

In Section [B] we shall introduce “homogeneous sequences”. In the “tame case”,
they can be used to determine the implicit constant field of a valued rational func-
tion field, and also to characterize this “tame case”. In Section [ we shall show how
to apply our results to power series, in the spirit of [MS| and [ZS] (Theorem [6.1)).
We will also use our approach to give proofs of two well known facts in p-adic al-
gebra: that the algebraic closure of @, is not complete and that its completion is
not maximal.

Finally, let us mention that we use our criteria for IC (K (x)|K,v) = K" in Sec-
tion [3.2] to give an example for the following fact: Suppose that K is relatively
algebraically closed in a henselian valued field (L,v) such that vL/vK is a tor-
sion group. Then it is not necessarily true that vL = vK, even if v has residue
characteristic 0.

I would like to thank Murray Marshall and Salma Kuhlmann for our very inspir-
ing joint seminar; without this seminar, this paper would not have been written.
I also feel very much endebted to Sudesh Kaur Khanduja for many ideas she has
shared with me. Finally, I would like to thank Roland Auer for finding some mis-
takes and asking critical questions.

2. NOTATION AND VALUATION THEORETICAL PRELIMINARIES

For an arbitrary field K, will will denote by K*° the separable-algebraic closure
of K, and by K the algebraic closure of K. By Gal K we mean the absolute Galois
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group Gal (K|K) = Gal (K*P|K). For a valuation v on K, we let Ok denote the
valuation ring of v on K.

Every finite extension (L|K,v) of valued fields satisfies the fundamental in-
equality (cf. [E]):

g
(21) n Z Zeifi
i=1

where n = [L : K] is the degree of the extension, v1,...,vs are the distinct ex-
tensions of v from K to L, e; = (v;L : vK) are the respective ramification indices
and f; = [Lv; : Kv] are the respective inertia degrees. Note that g = 1 if (K, v) is
henselian.

In analogy to field theory, an extension I' C A of abelian groups will also be
written as A|T", and it will be called algebraic if A/T is a torsion group. The
fundamental inequality implies the following well known fact:

Lemma 2.1. If (L|K,v) is finite, then so are vL/vK and Lv|Kv. If (L|K,v) is
algebraic, then so are vL/vK and Lv|Kwv.

Given two subextensions M |K and L|K within a fixed extension N|K, the field
compositum M.L is defined to be the smallest subfield of N which contains both
M and L. If L|K is algebraic, the compositum is uniquely determined by taking
N = M and specifying a K-embedding of L in M.

Lemma 2.2. Let (M|K,v) be an immediate extension of valued fields, and (L|K,v)
a finite extension such that [L : K] = (vL : vK)[Lv : Kv]. Then for every

K -embedding of L in M and every extension of v from M to M, the extension
(M.L|L,v) is immediate.

Proof. Via the embedding, we identify L with a subfield of M. Pick any extension
of v from M to M. This will also be an extension of v from L to M, because by the
fundamental inequality, the extension of v from K to L is unique. We consider the
extension (M.L|M,v). It is clear that v C v(M.L) and Lv C (M.L)v; therefore,
(v(M.L) : vK) > (vL : vK) and [(M.L)v : Kv] > [Lv : Kv]. Since (M|K,v) is
immediate, we have

[M.L:M] > @W(M.L):vM)[(M.L)v: Mv] = (v(M.L) : vK)[(M.L)v : Kv]
> (vL:vK)[Lv:Kv] = [L:K] > [M.L: M].

This shows that (v(M.L) : vK) = (vL : vK) and [(M.L)v : Kv] = [Lv : Kv]; that
is, v(M.L) = vL and (M.L)v = Lw. O

2.1. Pseudo Cauchy sequences. We assume the reader to be familiar with the
theory of pseudo Cauchy sequences as presented in [KA]. Recall that a pseudo
Cauchy sequence A = (ay)y<y in (K,v) (where A is some limit ordinal) is of
transcendental type if for every g(z) € K(x), the value vg(a,) is eventually
constant, that is, there is some vg < A such that

(2.2) vglay) = vglay,,) forall v>uyy, v<A.

Otherwise, A if of algebraic type.
Take a pseudo Cauchy sequence A in (K,v) of transcendental type. We define
an extension va of v from K to the rational function field K (x) as follows. For
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each g(z) € K[z], we choose vy < X such that (Z2) holds. Then we set

va g(x) = vg(ay,) .
We extend va to K (x) by setting va (g/h) := vag—vah. The following is Theorem 2
of [KA]:

Theorem 2.3. Let A be a pseudo Cauchy sequence in (K,v) of transcendental
type. Then va is a valuation on the rational function field K(x). The exten-
sion (K (x)|K,va) is immediate, and x is a pseudo limit of A in (K(z),va). If
(K (y),w) is any other valued extension of (K,v) such that y is a pseudo limit of
A in (K(y),w), then x — y induces a valuation preserving K -isomorphism from
(K((E),’UA) onto (K(y)aw)

From this theorem we deduce

Lemma 2.4. Suppose that in some valued field extension of (K, v), x is the pseudo
limit of a pseudo Cauchy sequence in (K,v) of transcendental type. Then the ex-
tension (K (x)|K,v) is immediate and x is transcendental over K.

Proof. Assume that (a,),<x is a pseudo Cauchy sequence in (K,v) of transcen-
dental type. Then by Theorem [Z3] there is an immediate extension w of v to
the rational function field K (y) such that y becomes a pseudo limit of (a,),<x;
moreover, if also x is a pseudo limit of (a,),<x in (K(z),v), then z — y in-
duces a valuation-preserving isomorphism from K (z) onto K (y) over K. Hence,
(K (x)|K,v) is immediate and « is transcendental over K. O

Lemma 2.5. A pseudo Cauchy sequence of transcendental type in a valued field
remains a pseudo Cauchy sequence of transcendental type in every algebraic valued
field extension of that field.

Proof. Assume that (a,),<» is a pseudo Cauchy sequence in (K, v) of transcenden-
tal type and that (L|K,v) is an algebraic extension. If (a,),<x were of algebraic
type over (L, v), then by Theorem 3 of [KA] there would be an algebraic extension
L(y)|L and an immediate extension of v to L(y) such that y is a pseudo limit of
(av)v<x in (L(y),v). But then, y is also a pseudo limit of (a,),<x in (K(y),v).
Hence by the foregoing lemma, y must be transcendental over K. This is a contra-
diction to the fact that L(y)|L and L|K are algebraic. O

2.2. Valuation independence. For the easy proof of the following lemma, see
[B], Chapter VI, §10.3, Theorem 1.

Lemma 2.6. Let (L|K,v) be an extension of valued fields. Take elements x;,y; €
L,iel, j€ J, such that the values vz;, © € I, are rationally independent over
vK, and the residues y;v, j € J, are algebraically independent over Kv. Then the
elements x;,y;, 1 € I, j € J, are algebraically independent over K.

Moreover, if we write

f = ch fok Hy;'” € Klzi,yj |iel,jeJ
k i€l j€J

in such a way that for every k # ¢ there is some i such that py; # pe; or some j

such that vy j # v j , then

(2.3) vf = mkin vckaf’”' Hy;”w _ mkin ve + E ke i VT
icl jed icl
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That is, the value of the polynomial f is equal to the least of the values of its
monomials. In particular, this implies

vK(z,y;liel,jeld) = vKEBGSZwvi7
iel
K(zyyjliel,jeJ)v = Kov(yjv|jed).

Moreover, the valuation v on K(z;,y; | i € I,j € J) is uniquely determined by its
restriction to K, the values vx; and the residues y;v.

Conversely, if (K,v) is any valued field and we assign to the va; any values in an
ordered group extension of vKK which are rationally independent, then ([23) defines
a valuation on L, and the residues y;v, j € J, are algebraically independent over
Ko.

Corollary 2.7. Let (L|K,v) be an extension of finite transcendence degree of valued
fields. Then

(2.4) trdeg L|K > trdeg Lv|Kv + rr (vL/vK) .

If in addition L|K is a function field and if equality holds in (2.4)), then the exten-
sions vL|vK and Lv|Kv are finitely generated.

Proof. Choose elements 1,...,Z,,91,...,Yr € L such that the values vzy,..., vz,
are rationally independent over vK and the residues yyv, ..., y,v are algebraically
independent over Kv. Then by the foregoing lemma, p + 7 < trdeg L|K. This
proves that trdeg Lv|Kv and the rational rank of vL/vK are finite. Therefore, we
may choose the elements x;,y; such that 7 = trdeg Lv|Kv and p = rr (vL/vK) to
obtain inequality (2.4).

Assume that equality holds in ([24)). This means that L is an algebraic extension
of Ly :== K(x1,...,%Zp,Y1,---,Yr). Since L|K is finitely generated, it follows that
L| Ly is finite; hence by Lemmal[21] also vL/vLg and Lv|Lgv are finite. Since already
vLo|vK and Lov|Kv are finitely generated by the foregoing lemma, it follows that
also vL|vK and Lv|Kv are finitely generated. O

The algebraic analogue of the transcendental case discussed in Lemma [2.6]is the
following lemma (see [R] or [E]):

Lemma 2.8. Let (L|K,v) be an extension of valued fields. Take n; € L such that
vn;, © € I, belong to distinct cosets modulo vK. Further, take 9; € O, j € J,
such that ¥;v are Kv-linearly independent. Then the elements n;9;,1 €1, j € J,
are K -linearly independent, and for every choice of elements c;; € K, only finitely
many of them nonzero, we have that

v eiymit; = min vegnd; = min (vey; + vn;) -
— i,j i,j
i,
If the elements n;9; form a K-basis of L, then vn; , © € I, is a system of represen-
tatives of the cosets of vL modulo vK, and 9;v, j € J, is a basis of Lv|Kwv.

The following is an application which is important for our description of all
possible value groups and residue fields of valuations on K(z). The result has
been proved with a different method in [APZ3| (Corollary 5.2); cf. Remark Bl in
Section Bl

Theorem 2.9. Let K be any field and v any valuation of the rational function field
K(x). Then vK(x)/vK is countable, and K (x)v|Kv is countably generated.
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Proof. Since K (z) is the quotient field of K[z], we have that vK(z) = vK|x] —
vK[z]. Hence, to show that vK(x)/vK is countable, it suffices to show that the
set {a +vK | a € vK]z]} is countable. If this were not true, then by Lemma
(applied with J = {1} and ¥; = 1), we would have that K[z] contains uncountably
many K-linearly independent elements. But this is not true, as K[z| admits the
countable K-basis {z* | i > 0}.

Now assume that K (x)v|Kv is not countably generated. Then by Corollary
K(z)v|Kv must be algebraic. It also follows that K(z)v has uncountable Kv-
dimension. Pick an uncountable set x and elements f;(z)/gi(z), i € K, with
fi(z), gi(z) € K[z] and vf;(x) = vg;(x) for all 4, such that their residues are Kv-
linearly independent. As vK (z)/vK is countable, there must be some uncountable
subset A C & such that for all i € A, the values vf;(x) = vg;(z) lie in the same
coset modulo vK, say vh(z) + vK with h(x) € K[z]. The residues (f;(z)/g:(z))v,
i € A, generate an algebraic extension of uncountable dimension. Choosing suitable
elements ¢; € K such that

veifi(x) = vh(x) = vegi(x) ,

we can write

file) _afi@)  Ma)  _ afi) (@m(ﬂ?))l
gi(x) h(z)  cigi(x) h(z) h(z)
for all ¢ € A. Therefore,

B = (S5h) ()

for all ¢ € A. In order that these elements generate an algebraic extension of
Kv of uncountable dimension, the same must already be true for the elements
(cifi(x)/h(x))v, i € A, or for the elements (¢;g;(z)/h(z))v, i € X\. Tt follows that
at least one of these two sets contains uncountably many Kwv-linearly independent
elements. But then by Lemma (applied with I = {1} and n; = 1), there are
uncountably many K-linearly independent elements in the set

1
WKM

and hence also in K[z], a contradiction. O

Finally, let us mention the following lemma, which combines the algebraic and
the transcendental case. We leave its easy proof to the reader.

Lemma 2.10. Let (L|K,v) be an extension of valued fields. Take x € L. Suppose
that for some e € N there exists an element d € K such that vdx® = 0 and dx®v
is transcendental over Kv. Let e be minimal with this property. Then for every
f=cpa™ 4+ ... +co € K[z],

vf = min vex® .
1<i<n

Moreover, K(z)v = Kv(dz®v) is a rational function field over Kv, and we have

vK(z) = vK + Zvx with (vK(z):vK) = e.
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2.3. Construction of valued field extensions with prescribed value groups
and residue fields. In this section, we will deal with the following problem. Sup-
pose that (K,v) is a valued field, T'|vK is an extension of ordered abelian groups
and k|Kv is a field extension. Does there exist an extension (L|K,v) of valued
fields such that v = T' and Lv = k? We include the case of (K, v) being trivially
valued; this amounts to the construction of a valued field with given value group
and residue field. Throughout, we use the well known fact that if (K, v) is any
valued field and L is any extension field of K, then there is at least one extension
of v to L (cf. [E], [R]).

Let us adjust the following notion to our purposes. Usually, when one speaks of
an Artin-Schreier extension then one means an extension of a field K generated
by a root of an irreducible polynomial of the form X? — X — ¢, provided that
p = char K. We will replace this by the weaker condition “p = char Kv”. In fact,
such extensions also play an important role in the mixed characteristic case, where
char K = 0.

Every Artin-Schreier polynomial X? — X — c is separable, since its derivative
does not vanish. The following is a simple but very useful observation:

Lemma 2.11. Let (K,v) be a valued field and ¢ € K such that ve < 0. Ifa € K
is such that a? — a = ¢, then for every extension of v from K to K(a),

0> v(a? —¢c) = va > pva = vc.
Proof. Take any extension of v from K to K (a). Necessarily, va < 0, since otherwise
oo = v(aP — a — ¢) = min{pva,va,vc} = wve, a contradiction. It follows that
va? = pva < va, and thus
ve = min{v(a? —a —¢),v(a? —a)} = v(a® —a) = min{pva,va} = pva .

O

Lemma 2.12. Let (K, v) be a non-trivially valued field, p a prime and o an element
of the divisible hull of vK such that pa € vK, oo ¢ vK. Choose an element a € K
such that a? € K and va? = pa. Then v extends in a unique way from K to K(a).
It satisfies

(2.5)

va=a, [K(a):K]= wK(a):vK), vK(a) = vK+Za and K(a)v = Kv.
If char K = char Kv = p, then this extension K(a)|K is purely inseparable. On
the other hand, if char Kv = p, then there is always an Artin-Schreier extension
K (a)|K with properties 238); if o < 0, then a itself can be chosen to be the root of
an Artin-Schreier polynomial over K.

Proof. Take ¢ € K such that ve = pa and a € K such that a? = ¢. Choose any
extension of v from K to K(a). Then pva = ve = pa. Consequently, va = «
and (vK(a) : vK) > (WK + Za : vK) = p. On the other hand, the fundamental
inequality (&) shows that
p=[K(a): K] > (vK(a):vK)- - [K(a)v: Kv] > (vK(a): vK)>p.
Hence, equality holds everywhere, and we find that
(vK(a) :vK)=p and [K(a)v:Kv]=1.

That is, vK (a) = vK + Za and K(a)v = Kv. Further, the fundamental inequality
implies that the extension of v from K to K(a) is unique.
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Now suppose that char Kv = p. Choose ¢ € K such that v¢c = —|pa| < 0. By
the foregoing lemma, every root b of the Artin-Schreier polynomial X? — X — ¢
must satisfy pvb = ve. Now we set a = b if a < 0, and @ = 1/b if & > 0 (but note
that then 1/a is in general not the root of an Artin-Schreier polynomial). Then as
before one shows that (2.5]) holds. O

For f € Ok[X], we define the reduction fv € Kv[X] to be the polynomial
obtained from f through replacing every coeflicient by its residue.

Lemma 2.13. Let (K, v) be a valued field and ¢ an element of the algebraic closure
of Kv. Choose a monic polynomial f € Ok [X] whose reduction fv is the minimal
polynomial of ¢ over Kv. Further, choose a root b € K of f. Then there is a unique
extension of v from K to K(b) and a corresponding extension of the residue map
such that

(2.6) bu=¢, [K(@®):K]=[Kv():Kv], vK()=vK and K(b)v=Kov(().

In all cases, f can be chosen separable, provided that the valuation v is non-trivial.
On the other hand, if char K = char Kv = p > 0 and { is purely inseparable over
Ko, then b can be chosen purely inseparable over K.

If v is non-trivial, char Kv = p > 0 and (P € Kv, {( ¢ Kv, then there is also
an Artin-Schreier extension K (b)|K such that (Z8) holds and db is the root of an
Artin-Schreier polynomial over K, for a suitable d € K.

Proof. We choose an extension of v from K to K (b). Since f is monic with integral
coeflicients, b must also be integral for this extension, and bv must be a root of fv.
We may compose the residue map with an isomorphism in Gal Kv which sends this
root to ¢. Doing so, we obtain a residue map (still associated with v) that satisfies
bv = (. Now ¢ € K (b)v, and consequently [K (b)v : Kv] > [Kv(¢) : Kv] = deg fv =
deg f. On the other hand, the fundamental inequality shows that

deg f=[K(b): K] > (vK(b) : vK) - [K(b)v: Kv] > [K(b)v: Kv] > deg f .

Hence, equality holds everywhere, and we find that [K (b)v : Kv] = [Kv(¢) : Kv] =
[K(b) : K] and (vK(b) : vK) = 1. That is, vK(b) = vK and K(b)v = Kv(().
Further, the uniqueness of v on K (a) follows from the fundamental inequality.

If fv is separable, then so is f. Even if fv is not separable but v is non-trivial
on K, then f can still be chosen separable since we can add a summand ¢X with
¢ # 0, ve > 0 (we use that v is non-trivial) without changing the reduction of f.
On the other hand, if fv is purely inseparable and hence of the form X?” — cv, then
we can choose f = XP” — ¢, which also is purely inseparable if char K = p.

Now suppose that char Kv = p > 0 and ¢ € Kv, ( ¢ Kv. Choose ¢ € K such
that cv = (P. To construct an Artin-Schreier extension, choose any d € K with
vd < 0, and let by be a root of the Artin-Schreier polynomial X? — X — dPc. Since
vdPc = pvd < 0, Lemma [ZTT] shows that v(bf) — dPc) = vby > vbf. Consequently,
v((bo/d)P — ¢) > v(bo/d)P = vc = 0, whence (by/d)Pv = cv and (b /d)v = (cv)'/P =
¢. We set b =bg/d; so K(b) = K(bg). As before, it follows that vK(b) = vK and
K(b)v = Kv(¢). O

Theorem 2.14. Let (K,v) be an arbitrary valued field. For every extension I'|vK
of ordered abelian groups and every field extension k|Kwv, there is an extension
(L,v) of (K,v) such that vL =T and Lv = k. If T|vK and k|Kv are algebraic,
then L|K can be chosen to be algebraic, with a unique extension of v from K to
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L. If p = rT/vK and 7 = trdegk|Kv are finite, then L|K can be chosen of
transcendence degree p + 7. If T' # {0}, then L can be chosen to be a separable
extension of K.

If both T|vK and k|Kv are finite, then L|K can be taken to be a finite extension
such that [L : K] = (T : vK)[k : Kv]. If in addition v is non-trivial on K, then
L|K can be chosen to be a simple separable-algebraic extension.

IfT/vK is countable and k|Kv is countably generated, then L|K can be taken to
be a countably generated extension.

Proof. For the proof, we assume that I' # {0} (the other case is trivial). Let o,
i € I, be a maximal set of elements in I" rationally independent over vK. Then by
Lemma 2@ there is an extension (K1,v) := (K(x; | i € I),v) of (K,v) such that
VK1 =vK & ®iel Za; and K1v = Kv. Next, choose a transcendence basis (j, j €
J, of k|Kv. Then by Lemmal[2Z6 there is an extension (K2, v) := (Ki(y; | j € J),v)
of (K1,v) such that vKy = vK; and Kov = Kv({; | j € J). I T'|vK and k|Kv are
algebraic, then [ = J =0 and Ko = K.

If we have an ascending chain of valued fields whose value groups are subgroups
of I' and whose residue fields are subfields of k, then the union over this chain
is again a valued field whose value group is a subgroup of I' and whose residue
field is a subfield of k. So a standard argument using Zorn’s Lemma together with
the transitivity of separable extensions shows that there are maximal separable-
algebraic extension fields of (K5, v) with these properties. Choose one of them and
call it (L,v). We have to show that vL =T and Lv = k. Since already T'|vK5 and
k|Kov are algebraic, the same holds for T'|vL and k|Lv. If vL is a proper subgroup of
T, then there are some prime p and some element o € T'\vL such that pa € vL. But
then, Lemma [2.12] shows that there exists a proper separable-algebraic extension
(L', v) of (L,v) such that vL’ = vL+Za C T and L'v = Lv C k, which contradicts
the maximality of L. If Lv is a proper subfield of k, then there is some element
¢ € k\ Lv algebraic over Lv. But then, Lemma [2.13] shows that there exists a
proper separable-algebraic extension (L’,v) of (L,v) such that vZ' = vL C T and
L'v = Lv(¢) C k, which again contradicts the maximality of L (here we have used
I' # {0}, which implies that v is not trivial on L). This proves that vL =T and
Lv =k, and (L, v) is the required extension of (K, v). Since K5 is generated over K
by a set of elements which are algebraically independent over K, we know that Ka| K
is separable. Since also L|K> is separable, we find that L|K is separable. Since
L|K, is algebraic, {z;, y; |1 € I, j € J} is a transcendence basis of (Ko|K,v). If
TlvK and k|Kv are algebraic, then I = J = (J and L is an algebraic extension of
K=K,.

If T|vK and k|Kv are finite, then L can be constructed by a finite number of
applications of Lemma and Lemma T3 Since extension degree, ramification
index and inertia degree are multiplicative, we obtain

[L:K]= (vl :vK)[Lv: Kv] =(T:vK)[k: Kv].

If in addition v is non-trivial, then L|K can be chosen to be a separable extension.
Since it is finite, it is simple.

If T|/vK and k|Kwv are countably generated algebraic, then they are unions over
a countable chain of algebraic extensions. Hence also L can be constructed as a
union over a countable chain of algebraic extensions, and will thus be a countably
generated extension of K.
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If T'|vK and k|Kv are countably generated, then the sets I and J in our above
construction are both countable, that is, K2|K is countably generated. Moreover,
the extensions I'|vK> and k|Kqv are countably generated algebraic. Hence by what
we have just shown, L can be taken to be a countably generated extension of Ks,
and thus also of K. O

Every ordered abelian group is an extension of the trivial group {0} as well as
of the ordered abelian group Z. Every field of characteristic 0 is an extension of
Q, and every field of characteristic p > 0 is an extension of F,. Let I' # 0 be
an ordered abelian group and k a field. If chark = 0, then Q endowed with the
trivial valuation v will satisfy vQ = {0} C T and Qv = Q C k. If chark = p > 0,
then we can choose v to be the p-adic valuation on Q to obtain that vQ =Z C T
and Qu = F, C k. But also F), endowed with the trivial valuation v will satisfy
vF, = {0} Cc T" and Fpv = F, C k. An application of the foregoing theorem now
proves

Corollary 2.15. Let I" # 0 be an ordered abelian group and k a field. Then there
is a valued field (L,v) with vL =T and Lv = k. If chark = p > 0, then L can
be chosen to be of characteristic 0 (mized characteristic case) or of characteristic p
(equal characteristic case).

For the sake of completeness, we add the following information. From the fun-
damental inequality it follows that vK|vK, vK*P|vK, Kv|Kv and K*Pvy|Kv are
algebraic extensions. On the other hand, Lemma shows that the value group
of a separable-algebraically closed field must be divisible. Similarly, it follows from
Lemma that the residue field of a separable-algebraically closed non-trivially
valued field must be algebraically closed. This proves

Lemma 2.16. Leé (K, v) be a non-trivially valued field and extend v to K. Then
the value groups vK and vK™®P are equal to the divisible hull of vK', and the residue
fields Kv and K*°Pv are equal to the algebraic closure of Kv.

A valued field (K, v) of residue characteristic p > 0 is called Artin-Schreier
closed if every Artin-Schreier polynomial with coefficients in K admits a root in
K. Recall that if char K = p, then this means that every Artin-Schreier polynomial
with coefficients in K splits into linear factors over K. If K is Artin-Schreier closed,
then so is Kv. As a corollary to Lemmas and T3, we obtain

Corollary 2.17. FEvery Artin-Schreier closed non-trivially valued field of residue
characteristic p > 0 has p-divisible value group and perfect Artin-Schreier closed
residue field.

2.4. Orderings and valuations. We will assume the reader to be familiar with
the basic theory of convex valuations, which can be found in [L] and [PR].

Proposition 2.18. Suppose that (K, <) is an ordered field with convex valuation
v, and denote by <, the ordering induced by < through v on Kv. Let (L|K,v) be
an extension of valued fields. If 2vL NvK = 2vK, then each extension <. of <,
to an ordering of Lv can be lifted through v to an ordering of L which extends the
ordering < of K.

Proof. We fix a section from vK/2vK to K*/K*2. Since 2vL NvK = 2vK, this
section can be extended to a section from vL/2vL to L*/L*%. Now there is a
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bijection between the set of all liftings of <, through v to orderings of K, and
the set of all group characters of vK/2vK; see [PR], (7.5) to (7.9). The same
construction yields a bijection between the set of all liftings of </ through v to
orderings of L, and the set of all group characters of vL/2vL. Since we use an
extension of the section vK/2vK — K*/K*? to a section vL/2vL — L*/L*?
the bijection maps commute with the restriction from L to K of any lifting. That
is, if a lifting <’ of </ to L corresponds to a character x of vL/2vL, then the
restriction of <’ to K is the unique lifting of <, to K which corresponds to the
restriction of x to vK/2vK.

As the given ordering < of K is a lifting of <, , it corresponds to a unique
group character of vK/2vK. Since 2vL NvK = 2vK, we can extend it to a group
character of vL/2vL. Take the lifting of </. through v to an ordering <’ of L which
corresponds to this group character of vL/2vL. Then its restriction to K is <. O

The following was proved by Knebusch and Wright [KW] and by Prestel (cf.
[PR)); see Theorem 5.6 of [LI.

Theorem 2.19. Let v be a convexr valuation on the ordered field (K, <), <, the
ordering induced by < on Kv, and R a real closure of (K,<). Then there exists
a unique extension of v to a convex valuation of R. Denoting this extension again
by v, we have that (R,v) is henselian, vR is divisible, and Rv with the ordering
induced by < is a real closure of (Kv,<,).

Corollary 2.20. Let v be a convex valuation on the ordered field (K, <) and R a
real closure of (K, <), endowed with the unique convex extension of v. Further, let
TlvK be an algebraic extension of ordered abelian groups, and k|Kv a subextension
of some real closure of Kv. Then there is a (separable-algebraic) subextension
(L|K,v) of (R|K,v) such that vL =T and Lv = k. If both T|vK and k|Kv are
finite, then L|K can be taken to be a finite simple extension of the form K(a)|K
such that [K(a) : K] = (T : vK)[k : Kv].

We leave the proof of the corollary as an exercise to the reader. It is a straight-
forward application of Hensel’s Lemma, using the fact that (R, v) is henselian. One
also uses the fact that all real closures of Kv are isomorphic over Kv, so by passing
to an equivalent residue map (place), one passes from Rv to the real closure given
in the hypothesis.

2.5. A version of Krasner’s Lemma. Let (K, v) be any valued field. Ifa € K\ K
is not purely inseparable over K, we choose some extension of v from K to K and
define

kras(a, K) := max{v(ta —oa) | 0,7 € Gal K and 7a # oa} € vK

and call it the Krasner constant of a over K. Since all extensions of v from K to
K are conjugate, this does not depend on the choice of the particular extension of v.
For the same reason, over a henselian field (K, v) our Krasner constant kras(a, K)
coincides with the Krasner constant

max{v(a —oa) | 0 € Gal K and a # oa}

as defined by S. K. Khanduja in [KH11], [KHI2]. The following is a variant of the
well-known Krasner’s Lemma (cf. [R]).
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Lemma 2.21. Take K(a)|K to be a separable-algebraic extension, and (K (a,b),v)
to be any valued field extension of (K,v) such that

(2.7) v(b—a) > kras(a, K) .

Then for every extension of v from K(a,b) to its algebraic closure K(a,b) = K(b),
the element a lies in the henselization of (K (b),v) in (K (b),v).

—

Proof. Take any extension of v from K(a,b) to K(b) and denote by K(b)" the
henselization of (K (b),v) in (K(b),v). Since a is separable-algebraic over K, it is
also separable-algebraic over K (b)". Since for every p € Gal K(b)" we have that
pa = p|za and p|z € Gal K, we find that

{v(a —pa) | p € Gal K(b)" and a # pa}
C {v(a—oa)|oeGalK and a # oa}
C {v(ra—oca)|o,7 € GalK and 7a # oa} .

This implies that

kras(a, K (b)") < kras(a, K) ,
and consequently, v(b — a) > kras(a, K(b)"). Now a € K(b)" follows from the
usual Krasner’s Lemma. g

3. VALUATIONS ON K (x)

3.1. A basic classification. In this section, we wish to classify all extensions of
the valuation v of K to a valuation of the rational function field K (z). As

(3.1) 1 = trdeg K(z)|K > rrovK(z)/vK + trdeg K (z)v|Kwv

holds by Lemma [2Z.6] there are the following mutually exclusive cases:
(K (x)|K,v) is valuation-algebraic:

K(z)/vK is a torsion group and K (z)v|Kv is algebraic,
(K(z)|K,v) is value-transcendental:

K (z)/vK has rational rank 1, but K (z)v|Kv is algebraic,

e (K(x)|K,v) is residue-transcendental:

K (x)v|Kv has transcendence degree 1, but vK (z)/vK is a torsion group.
We will combine the value-transcendental case and the residue-transcendental case
by saying that

e (K(z)|K,v) is valuation-transcendental:

vK (x)/vK has rational rank 1, or K (z)v|Kv has transcendence degree 1.
A special case of the valuation-algebraic case is the following:

o (K(z)|K,v) is immediate:

vK(z) =vK and K(z)v = Kw.

Remark 3.1. It has been observed by several authors that a valuation-algebraic
extension of v from K to K (x) can be represented as a limit of an infinite sequence
of residue-transcendental extensions. See, e.g., [APZ3], where the authors also
derive the assertion of our Theorem from this fact. A “higher form” of this
approach is found in [S]. The approach is particularly important because residue-
transcendental extensions behave better than valuation-algebraic extensions: the
corresponding extensions of value group and residue field are finitely generated
(Corollary [ZT)), and they do not generate a defect: see the Generalized Stability
Theorem (Theorem 3.1) and its application in [KKUI].

[ ]
v
[ ]
v



4574 FRANZ-VIKTOR KUHLMANN

If K is algebraically closed, then the residue field Kv is algebraically closed, and
the value group vK is divisible. So we see that for an extension (K (z)|K,v) with
algebraically closed K, there are only the following mutually exclusive cases:
(K(z)|K,v) is immediate: vK(z) =vK and K(z)v = Kv,

(K(z)|K,v) is value-transcendental: rrvK (z)/vK =1, but K(z)v = Kv,
(K (x)|K,v) is residue-transcendental: trdeg K (z)v|Kv = 1, but vK(z) = vK.

Let us fix an arbitrary extension of v to K. Every valuation w on K (x) can be
extended to a valuation on K (x). If v and w agree on K, then this extension can be
chosen in such a way that its restriction to K coincides with v. Indeed, if v’ is any
extension of w to K (z ) and v’ is its restriction to K, then there is an automorphism
7 of K|K such that v'7 = v on K. We choose o to be the (unique) automorphlsm
of K(z)|K (z) whose restriction to K is 7 and which satisfies 0z = 2. Then w'o is
an extension of w from K (z) to K (z) whose restriction to K is v. We conclude:

Lemma 3.2. Take any extension of v from K to its algebraic closure K. Then
every extension of v from K to K(x) is the restriction of some extension of v from
K to K(z).

Now extend v to Ia;) We know that vla;)/vK(m) and vK /uK are torsion
groups, and also vK (z)/vK (z) C vfa;)/vK(x) is a torsion group. Hence,

oK (z)/vK = oK (z)/vK .

Since vK is divisible, vK (z )/UK is a torsion group if and only if vK (z) = vK.

Further, the extensions K ( v |K (z)v and Kv|Kv are algebraic, and also the
subextension K (z)v|K (z)v of K( Ju|K (x)v is algebraic. Hence,

trdeg K (z)v|Kv = trdeg K (z)v|Kv .

Since K is algebraically closed, K (x)v|Kwv is algebraic if and only if K (z)v = Kwv.
We have proved

Lemma 3.3. (K (z)|K,v) is valuation-algebraic if and only if (K (z)
mediate. (K (z)|K,v) is valuation-transcendental if and only if (K ()|
immediate. (K (x)|K,v) is value-transcendental if and only if (K (
transcendental. (K (x)|K,v) is residue-transcendental if and only if
residue-transcendental.

K,v) is im-
K,v) is not
;U)|K', v) is value-
(K (x)|K,v) is

The proof can easily be generalized to show:

Lemma 3.4. Let (F|K,v) be any valued field extension. Then vF|[vK and Fv|Kv
are algebraic if and only if (F.K|K,v) is immediate, for some (or any) extension
of v from F to F.K.

3.2. Pure and weakly pure extensions. Taket € K(x). If vt is not a torsion ele-
ment modulo vK, then ¢t will be called a value-transcendental element. If vt =0
and tv is transcendental over Kv, then ¢ will be called a residue-transcendental
element. An element will be called a valuation-transcendental element if
it is value-transcendental or residue-transcendental. We will call the extension
(K(z)|K,v) pure (in z) if one of the following cases holds:

e for some ¢,d € K, d- (x — ¢) is valuation-transcendental,

e z is the pseudo limit of some pseudo Cauchy sequence in (K, v) of transcen-
dental type.
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We leave it as an exercise to the reader to prove that (K (z)|K,v) is pure in z if
and only if it is pure in any other generator of K (x) over K; we will not need this
fact in the present paper.

If (K (z)|K,v) is pure in z, then it follows from Lemma [2.6] and Lemma 2.4] that
x is transcendental over K. If d - (x — ¢) is value-transcendental, then vK(z) =
vK ®Zv(z—c) and K(z)v = Kv by Lemma [2.6] (in this case, we may in fact choose
d=1). If d- (z — ¢) is residue-transcendental, then, again by Lemma [2.6] we have
vK(z) = vK, and K(z)v = Kv(d(xz — ¢)v) is a rational function field over Kv. If
x is the pseudo limit of some pseudo Cauchy sequence in (K, v) of transcendental
type, then (K (z)|K,v) is immediate by Lemma [2:4l This proves

Lemma 3.5. If (K(z)|K,v) is pure, then vK is pure in vK(z) (i.e., vK(z)/vK
is torsion free), and Kv is relatively algebraically closed in K (x)v.

Here is the “prototype” of pure extensions:
Lemma 3.6. If K is algebraically closed and x ¢ K, then (K (z)|K,v) is pure.
Proof. Suppose that the set
(3.2) vie—K) = {v(x—-b)|be K}

has no maximum. Then there is a pseudo Cauchy sequence in (K, v) with pseudo
limit z, but without a pseudo limit in K. Since K is algebraically closed, Theorem 3
of [KA] shows that this pseudo Cauchy sequence must be of transcendental type.
The extension therefore satisfies the third condition for being pure.

Now assume that the set v(z — K) has a maximum, say, v(z — ¢) with ¢ € K. If
v(x — ¢) is a torsion element over vK, then v(x — ¢) € vK, because vK is divisible
as K is algebraically closed. It then follows that there is some d € K such that
vd(x — ¢) = 0. If d(z — ¢)v were algebraic over Kv, then it would be in Kwv, since
K and thus also Kwv is algebraically closed. But then, there would be some by € K
such that v(d(z — ¢) — bg) > 0. Putting b := ¢+ d~'bg, we would then obtain that
v(z —b) =v((x —¢) —d'by) > —vd = v(x — ¢), a contradiction to the maximality
of v(z — ¢). So we see that either v(x — ¢) is non-torsion over vK, or there is some
d € K such vd(z — ¢) = 0 and d(x — ¢)v is transcendental over Kv. In both cases,
this shows that (K (z)|K,v) is pure. O

We will call the extension (K (x)|K,v) weakly pure (in z) if it is pure in x
or if there are ¢,d € K and e € N such that vd(x — ¢)¢ = 0 and d(z — ¢) is
transcendental over Kv.

Lemma 3.7. Assume that the extension (K(x)|K,v) is weakly pure. If we take

—_

any extension of v to K (x) and take K" to be the henselization of K in (K (x),v),
then K" is the implicit constant field of this extension:
K" = IC (K (2)|K,v) .

Proof. As noted already in the introduction, K" is contained in IC (K (z)|K,v).
Since K ()" is the fixed field of the decomposition group G¢ := G¢(K (x)*°P| K (z), v)
in the separable-algebraic closure K (x)%P of K (x), we know that IC (K (z)|K,v) is
the fixed field in K®°P of the subgroup

Gres = {U|Ksep | o c Gg}

of Gal K. In order to show our assertion, it suffices to show that IC (K (z)| K, v) C
K" that is, that the decomposition group G¢ := G¥(K*P|K,v) is contained in



4576 FRANZ-VIKTOR KUHLMANN

Gres. So we have to show that if 7 is an automorphism of K*P|K such that
v7 = v on K%P  then 7 can be lifted to an automorphism o of K (z)%P|K (z) such
that vo = v on K(x)*P. In fact, it suffices to show that 7 can be lifted to an
automorphism o of K*P(z)|K(z) such that vo = v on K*P(z). Indeed, then we
take any extension o’ of o from K*P(z) to K (x)%P. Since the extensions vo’ and v
of v from K*°P(x) to K (z)%P are conjugate, there is some p € Gal (K (z)%P|K5P(x))
such that va'p = v on K(z)*P. Thus, o := 0'p € G¢ is the desired lifting of T to
K (x)%°P.

We take o on K®P(x) to be the unique automorphism which satisfies oz = = and
0|k=er = 7. Using that (K (x)|K,v) is weakly pure, we have to show that vo = v
on K*P(z). Assume first that for some ¢,d € K and e € N, d(z — ¢)¢ is valuation-
transcendental. Since K (z — ¢) = K(x), we may assume w.l.o.g. that ¢ = 0. Every
element of K°°P(x) can be written as a quotient of polynomials in = with coefficients
from K*®¢P. For every polynomial f(z) = a,z™ + ...+ a1z + ag € K*P[z],

vof(z) = wv(o(an)z"+ ...+ 0(a1)z + o(ap))
= miin(va(ai) +ivz) = miin(vT(ai) + ivx)

= min(va; + ivx) = vf(z),

where the second equality holds by Lemma 2.6l and Lemma This shows that
vo = v on K*P(z).

Now assume that « is the pseudo limit of a pseudo Cauchy sequence in (K, v)
of transcendental type. By Lemma [2.5], this pseudo Cauchy sequence is also of
transcendental type over (K®*P v). Observe that z is still a pseudo limit of this
pseudo Cauchy sequence in (K%P(z),vo), because vo(x—a) = v(ox—oa) = v(z—a)
for all a € K. But vo = vr = v on K*P, and the extension of v from K®°P to
K®°P(z) is uniquely determined by the pseudo Cauchy sequence (cf. Theorem 23)).
Consequently, vo = v on K%P(z). O

3.3. Construction of nasty examples. We are now able to give the

Proof of Theorem Let K be any algebraically closed field of characteristic p >
0. On K(x), we take v to be the z-adic valuation. We work in the power series
field K ((p%oZ)) of all power series in & with exponents in p%oZ, the p-divisible hull
of Z. We choose y to be a power series

o0
(3.3) y =y a?",
=1

where e; is any increasing sequence of natural numbers such that e; 11 > e; + 4 for
all . We then restrict the canonical (z-adic) valuation of K((#Z)) to K(x,y) and
call it again v. We show first that vK (z,y) = IJ%Z. Indeed, taking p-th powers
and using that the characteristic of K is p, we find that

J oo
e P ej—eq
P —p% T _ —p©iT
yP o — g x = g x .
i=1 i=j+1

Since e; —e; > 0 for ¢ < j, the left hand side is an element in K (z,y). The right
hand side has value

€j—€j+1 .
—p J i+ VT
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since e; — e;41 < —j, we see that %vx lies in vK (z,y). Hence, p%cZ C vK(z,y).

On the other hand, vK (z,y) C UK((Z%,OZ)) = p%oZ, and therefore vK (z,y) = %OZ
By definition, y is a pseudo limit of the pseudo Cauchy sequence

4
S
=1 (eN

in the field L = K (/7" | i € N) C K((IJ%OZ)) Suppose it were of algebraic type.
Then by [KA], Theorem 3, there would exist some algebraic extension (L(b)|L,v)
with b a pseudo limit of the sequence. But then b would also be algebraic over
K(x), and hence the extension K (x,b)|K (x) would be finite. On the other hand,
since b is a pseudo limit of the above pseudo Cauchy sequence, it can be shown as
before that vK (z,b) = p%cZ, and thus (vK (z,b) : vK(z)) = co. This contradiction
to the fundamental inequality shows that the sequence must be of transcendental
type. Hence by Lemma 37 L" is relatively algebraically closed in L(y)". Since
L" = L.K(x)" is a purely inseparable extension of K (z)" and K (x,y)" |K( )P
separable, this shows that K (x)" is relatively algebraically closed in K ( y)".
)

Now we set 7y := x, and by induction on ¢ we choose 7; € K( such that

n? —n; =ni—1. Then we have
vy = —va

for every i. Since vK ()" = vK(x) = Zvx, this shows that K(z)"(n;)|K(z)" has
ramification index at least p’. On the other hand, it has degree at most p’, and
therefore it must have degree and ramification index equal to p’. Note that, for
all i > 0, K(z,m;) = K(z,m1,...,n;) and every extension K (z,n4+1)|K(x,n;) is
a Galois extension of degree and ramification index p. By what we have shown,
the chain of these extensions is linearly disjoint from K (x)" K (z). Since K(z)"
is relatively algebraically closed in K (z,y)" and the extensions are separable, it
follows that the chain is also linearly disjoint from K (z,v)"|K ().

We will now show that all extensions K (z,y,n;)| K (z,y) are immediate. First,
we note that K (x,y)v = K, since K C K(z,y) C K((p%oZ)) and K((#Z))v =K.
Since K is algebraically closed, the inertia degree of the extensions must be 1.
Further, as the ramification index of a Galois extension is always a divisor of the
extension degree, the ramification index of these extensions must be a power of p.
But the value group of K (x, y) is p-divisible, which yields that the ramification index
of the extensions is 1. By what we have proved above, they are linearly disjoint
from K (z,y)"| K (z,y); that is, the extension of the valuation is unique. This shows
that the defect of each extension K (z,y,n;)| K (z,y) is equal to its degree p'. O

Remark 3.8. Instead of defining y as in ([B3)), we could also use any power series

(3.4) y = ix""'p_ei,
i=1

where n; € Z are prime to p and the sequence n;p~¢ is strictly increasing. The
example in [CP] is of this form. But in this example, the field K (z, y) is an extension
of degree p? of a field K (u,v) such that the extension of the valuation from K (u,v)
to K(z,y) is unique. Since the value group of K (z,y) is —Z it must be equal to

that of K(u,v). Since K is algebraically closed, both have the same residue field.
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Therefore, the extension has defect p?. This shows that we can also use subfields
instead of field extensions to produce defect extensions, in quite the same way.
A special case of (34) is the power series

oo o oo o
(3.5) y = sz_p G _ szm_p 67,,
i=1 i=1

which now has a support that is cofinal in IJ%CZ.

To conclude this section, we use Lemma B.7] to construct an example about
relatively closed subfields in henselian fields. The following fact is well known:

Suppose that K is relatively closed in a henselian valued field (L,v) of residue
characteristic 0 and that Lv|Kv is algebraic. Then vL/vK is torsion free.

We show that the assumption “Lv|Kv is algebraic” is necessary.

Example 3.9. On the rational function field Q(x), we take v to be the z-adic
valuation. We extend v to the rational function field Q(x,y) in such a way that
vy = 0 and yv is transcendental over Q(z)v = Q. So by Lemma we have
vQ(z,y) = vQ(z) = Zvzx and Q(x, y)v = Q(yv). We pick any integer n > 1. Then
vQ(2™) = Znvzr and Q(z™)v = Q. Further, vQ(z", zy) = Zvz, since vx = vy €
vQ(2™, zy) C Zvx. Also, Q(z™, zy)v = Q(y™v) by Lemma ZI0. From Lemma BT
we infer that Q(z™)" is relatively algebraically closed in Q(z", zy)". But

vQ(z", 2y)" [vQ(z™)" = vQ(a™, xy) /vQ(2™) = Zwx/Znvr ~ Z/nZ
is a non-trivial torsion group.

3.4. All valuations on K (z). In this section, we will explicitly define extensions
of a given valuation on K to a valuation on K(z). First, we define valuation-
transcendental extensions, using the idea of valuation independence. Let (K, v) be
an arbitrary valued field, and = transcendental over K. Take a € K and an element
«v in some ordered abelian group extension of vK. We define a map v, : K(x)* —
vK + Zry as follows. Given any g(z) € K|[z] of degree n, we can write
n
(3.6) g(x) = Z ci(r —a) .
i=0

Then we set
(3.7) Vay g(x) = ogliiéln ve; + iy .
We extend v, to K(x) by setting vq (g9/h) := Va,y9 — Va,~N.

For example, the valuation vg g is called the Gauf3 valuation or the functional
valuation and is given by

n _ .
vo,0 (" 4+ ...tz +c) = Ogliléln ve; .

Lemma 3.10. v, ~ s a valuation which extends v from K to K(z). It satisfies the
following conditions:

1) If v is non-torsion over v, then v, ,K(z) = vK & Zvy and K(x)v,,, = Kv.

2) If v is torsion over vK, e is the smallest positive integer such that ey € vK
and d € K is some element such that vd = —ery, then d(x—a)®vq - is transcendental
over Kv, K(z)vgy = Kv(d(z — a)®vq,) and va K (x) = vK + Z7y. In particular,
if v =0 then (x — a)vy 4 is transcendental over Kv, K(x)vg, = Kv ((x — a)vg,~)
and v, K (z) = vK.
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Proof. 1t is a straightforward exercise to prove that v, - is a valuation and that 1)
and 2) hold. However, one can also deduce this from Lemma 26 It says that if
we assign a non-torsion value v to z — a, then we obtain a unique valuation which
satisfies (3.7). Since this defines a unique map v, , on K|z], we see that v, , must
coincide with the valuation given by Lemma 2.6, which in turn satisfies assertion
1). Similarly, if v € vK, d € K with vd = —v and we assign a transcendental
residue to d(z — a), then Lemma gives us a valuation on K (z) which satisfies
(B7) and hence must coincide with v, . This shows that v, is a valuation and
satisfies 2).

If e > 1, then we can first use Lemma to see that v, is a valuation on the
subfield K (d(z — a)®) of K(z) and that

Vo K (d(z —a)¢) = vK

and

K(d(z — a)®)va,y = Kv(d(z — a)Va,~)
with d(z — a)®v,,~ transcendental over Kv. We know that there is an extension
w of vy to K(z). It must satisfy w(z —a) = —vd/e = v. So 0,w(x — a),
w(z —a)?,...,w(x —a)® ! lie in distinct cosets modulo vK. From Lemma 28 it
follows that w satisfies (B7) on K (x); hence it must coincide with the valuation
Va,y on K (x). Assertion 2) for this case follows from Lemma [2.8 O

Now we are able to prove

Theorem 3.11. Take any valued field (K,v). Then all extensions of v to the
rational function field K (x) are of the form

o Uy, where a € K and ~ is an element of some ordered group extension of
vK, or

e Ua, where A is a pseudo Cauchy sequence in (f(, 0) of transcendental type;
here © runs through all extensions of v to K. The extension is of the form Vg~
with v ¢ 0K if and only if it is value-transcendental, and with v € 0K if and only
if it is residue-transcendental. The extension is of the form va if and only if it is
valuation-algebraic.

All extensions of v to K(x) are obtained by restricting the above extensions,
already from just one fized extension © of v to K.

Proof. By Lemma B.T0land Theorem 23] 7, , and 94 are extensions of ¢ to K (x).
For the converse, let w be any extension of v to K(z) and set ¥ = w|z . From
Lemma we know that (K (z)|K,w) is always pure. Hence, either d(z — ¢) is
valuation-transcendental for some ¢, d € K , or x is the pseudo limit of some pseudo
Cauchy sequence A in (f( ,0) of transcendental type. In the first case, Lemma 2.8
shows that
n
i . ; . i,
w ; d;(d(x —¢))" = onin, vd; + iwd(x —¢) = Jin, vd;d" +iw(x — ¢)

for all d; € K. This shows that w = Ve, for v = w(x — ¢). If this value is not in
7K, then it is non-torsion over oK, and thus the extension of & to K (z), and hence
also the extension of v to K(x), is value-transcendental. If it is in @K, then the

residue of d(z — ¢) is not in K#, and the extension of # to K (z), and hence also the
extension of v to K (x), is residue-transcendental.
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In the second case, we know from Theorem [2.3] that A induces an extension 04
of © to K(x) such that z is a pseudo limit of A in (K(z),#a). Since z is also a
pseudo limit of A in (f((x),w), we can infer from Lemma B4 that w = 04 . It
also follows from Theorem that (K (x)|K,7a) is immediate, and consequently
(K (z)|K,#a) is valuation-algebraic.

For the last assertion, we invoke Lemma B2l Now it just remains to show that it
suffices to take the restrictions of the valuations ¥, ., and 0a for one fixed . Suppose
that @ is another extension of v to K. Since all such extensions are conjugate, there
is 0 € Gal K such that @ = 9 o 0. Let g(z) € K[z] be given as in (36). Extend o
to an automorphism of K (x) which satisfies cx = x. Since g has coefficients in K,
we then have

g(x) = og(x) = Zaci(x—aa)i,
i
and therefore
By () = min(ic; +i7) = min(@oe +i7) = Gran 9()

This shows that We,y = Uq,y o0 K(x).

Given a pseudo Cauchy sequence A in (K,w), we set A, = (cay),<x. This
is a pseudo Cauchy sequence in (K,?), since #(ca, — oa,) = vo(a, — a,) =
w(a,—a,). For every polynomial f(z) € K|z], we have o f(ca,) = wo ' (f(0a,)) =
w(o~1(f))(ay,), where o~1(f) denotes the polynomial obtained from f(z) by ap-
plying ! to the coefficients. So we see that A, is of transcendental type if and
only if A is. If g(z) € K[z], then 07 !(g9) = g, and the above computation shows
that vg(oa,) = wg(a,). This implies that WA = va, on K(z). O

Remark 3.12. If v is trivial on K, hence Kv = K (modulo an isomorphism), and if
we choose v > 0, then the restriction w of ¥, to K(x) will satisfy zw = aw = a.
It follows that K (z)w = K(a). Further, wK (x) C Z~, and thus wK (z) ~ Z.

3.5. Prescribed implicit constant fields. If not stated otherwise, we will always
assume that (K, v) is any valued field. The following is an immediate consequence
of our version of Krasner’s Lemma:

Lemma 3.13. Assume that K(a)|K is a separable-algebraic extension. Assume

—_—

further that K (x)|K is a rational function field and v is a valuation on K(x) such
that

(3.8) v(x —a) > kras(a, K) .
Then K(a) C (K(z)|K,v), and consequently,
vK(a) CvK(x) and K(a)v C K(z)v.

Proof. By Lemma [ZZ1] condition (ZX) implies that K (a) C K(x)", the henseliza-
tion being chosen in (K(z),v). Consequently, K(a) C IC (K (z)|K,v), vK(a) C
vK(2)" = vK(z) and K(a)v C K(z)"v = K(x)v. O

Proposition 3.14. Assume that (K (a)|K,v) is a separable-algebraic extension of
valued fields. Further, take T' to be the abelian group vK(a) ® Z endowed with any
extension of the ordering of vK (a), and take k to be the rational function field in
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one variable over K(a)v. Then there exists an extension v1 of v from K(a) to K (z)
such that

(3.9) wK(z) =T and K(z)v; = K(a)v and K(a)" = IC(K(2)|K,v1) .

If v is non-trivial on K, then there exists an extension vy of v from K(a) to K(x)
such that

(3.10) v K(x) = vK(a) and K(z)vy = k and K(a)" = IC(K(z)|K,vs) .

If (K(a),v) admits a transcendental immediate extension, then there is also an
extension vs such that

(3.11) v3K(x) =vK(a) and K(z)vs = K(a)v .

If in addition (K (a),v) admits a pseudo Cauchy sequence of transcendental type,
then vs can be chosen such that K (a)" = 1C (K (z)|K,vs).

Suppose that (K (a),<) is an ordered field and that v is convex. Denote by <,
the ordering induced by < on the residue field K (a)v. Then <, can be lifted through
vy and through vs to K(x) in such a way that the lifted orderings extend < (from
K). If <. is an extension of <, to k, then <!. can be lifted through vy to K(x) in
such a way that the lifted ordering extends < (from K ).

Proof. If K(a) = K, then we do the following. We take a generator «y of I" over vK

—_—

and let v1 be any extension of vy 5 to K (). Further, we take vs to be any extension

—

of vg,0 to K (z). Then the desired properties of v; and vy follow from Lemma B.10
and Lemma 37 To construct vz, we send x to some transcendental element in
the given immediate extension of (K,v). The embedding so obtained induces an
extension vg of v to K(z) such that (K(x)|K,vs) is immediate. We extend vs

—

further to K(z). If (K,v) admits a pseudo Cauchy sequence of transcendental
type, then we can use Theorem to construct an immediate extension vz of v
to K(x) such that = is a pseudo limit of this pseudo Cauchy sequence. Then by
Lemma[37] K" = IC (K (z)|K,v3).

Now assume that a ¢ K. If v/ is any extension of v to K (z) such that v'(z—a) >
kras(a, K'), then Lemma shows that a € K(x)", where the henselization is

taken in (K (z),v"). Thus,

—

(3.12) K@) = K(a,z)",

and consequently,

(3.13) v’K(x), = v’K(:Z}i = v’K(a,:}vL)}i = v’K(a,xz,
K(x)v' = K(z)"' = K(a,z)"v' = K(a,z)v" .

If in addition we know that

(3.14) K(a)" = IC(K(a,z)|K(a),v) ,

then

K(a)* C IC(K(x)|K,v') € IC(K(a,2)|K(a),v) = K(a)",
which yields that K (a)" = IC (K (z)|K,").
As vK is cofinal in its divisible hull vK, we can choose some o € vK such that
a > kras(a, K).
To construct vy , we choose any positive generator 3 of T over vK (a). Then also
~v:=«a+ [ is a generator of I over vK (a). Now we take v; to be any extension of
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—_

Va,y to K (). From Lemma BI0 we know that v, 4K (a,z) = vK(a) @ Zy =T and
K(a,x)vq,y = K(a)v. Since

(3.15) Vay(x —a) = v > kras(a, K) ,
equations ([BI3) hold for v' = v, , and we obtain
nkK(x) = v4,K(a,z) = vK(a)+Zy =T,
K(z)vu = K(a,2)vey = K(a)v.

From Lemma [B3.7] we infer that (3:I4) holds for v’ = v, . Consequently, K (a)" =
IC (K ()| K, v1).

To construct vy, we make use of our assumption that v is non-trivial on K and
choose somg\p/ositive 0 € vK. We set v:= a+ [ and take v2 to be any extension
of vg~4 to K(z). From Lemma BT0 we know that v, 4K (a,z) = vK(a) =T and
K(a,x)vq,y is a rational function field in one variable over K(a)v; in this sense,
K(a,z)ve~ = k. Again we have (315), and equations ([BI3) hold for v = vg 4; so
we obtain

vK(z) = vy,K(a,z) = vK(a),
K(z)vs = K(a,x)vay = k.

From Lemma [3.7] we infer that (3.I4) holds for v’ = v, . Consequently, K (a)" =
IC (K (2)| K, v2).

To construct vs , we take (L|K(a),v) to be the transcendental immediate exten-
sion which exists by hypothesis. We choose some y € L, transcendental over K (a)
and such that v := vy > kras(a, K). Then (K(a,y)|K(a),v) is immediate. Now
the isomorphism K(a,y) ~ K(a,x) induced by y — x — a induces on K(a,z) a
valuation v’ such that (K (a,z)|K(a),v’) is immediate and v'(z — a) = . We take

—_—

v3 to be any extension of v’ to K(z). Again we have (3.13)), and we obtain
v3K(z) = vK(a,r) = vK(a),
K(z)vs = K(a,z)v' = K(a)v.

If (K(a),v) admits a pseudo Cauchy sequence of transcendental type, then we can
use Theorem 2.3 to construct an immediate extension (K (a, 2)| K (a),v). Multiply-
ing z with a suitable element from K will give us y such that vy > kras(a, K). By
our above construction, also x will be a pseudo limit of a pseudo Cauchy sequence
of transcendental type. Then by Lemma[3.7, K(a)" = IC (K (z)|K,v3).

Finally, suppose that (K (a),<) is an ordered field and that <, is the ordering
induced by < on K(a)v. We have that vK(a) = vaK(a,z) = vsK(a,x), so it is
trivially true that 2v. K (a,z) NvK (a) = 20K (a) = 2vsK(a,x) NvK(a). Further,
v1K(a,2) = vK(a) @ Zy; hence also in this case 2v1 K (a,z) N vK (a) = 20K (a).
Therefore, Proposition 2.18] shows that the given orderings on K (a)v and k can be
lifted through vy , vo and w3 respectively, to orderings on K (a,x) which extend the
ordering < of K(a). O

This proposition proves Theorem [[3] in the case where KJ'|K" is finite, since
then there is some a € K; such that K = K(a)". Further, we obtain

Proposition 3.15. Take any finite ordered abelian group extension I'g of vK and
any finite field extension ko of Kv. Further, take I' to be the abelian group T'o ® Z
endowed with any extension of the ordering of Ty, and take k to be the rational
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function field in one variable over ko . If v is trivial on K, then assume in addition
that ko|Kv is separable. Then there exists an extension v1 of v from K to K(x)
such that

(3.16) K@) =T and K(x)vy = ko .

If v is non-trivial on K, then there exists an extension vy of v from K to K(x)
such that

(3.17) veK(x) = T and K(x)ve = k.

If (K,v) admits a transcendental immediate extension, then there is also an exten-
ston vz such that

(3.18) vsK(z) =T¢ and K(x)vs =ko .

Suppose that (K, <) is an ordered field and that v is convex. Suppose further
that ko and k are equipped with extensions of the ordering induced by < on Kwv.
Then these extensions can be lifted through v, vy, vz to K(x) in such a way that
the lifted orderings extend <.

Proof. We choose any finite separable extension (K (a)| K, v) such that vK (a) =T,
K(a)v = ko and [K(a) : K] = (vK(a) : vK)[K(a)v : Kv]. If v is non-trivial on
K, then such an extension exists by Theorem 2.14} otherwise, K (a) is just equal
to ko, up to the isomorphism induced by the residue map of the trivial valuation
v. If (K,v) admits a transcendental immediate extension, then by Lemma[2.2] also
(K (a),v) admits a transcendental immediate extension. Now the first part of our
proposition follows from Proposition [3:14]

Suppose that (K, <) is an ordered field with v convex. Then by Corollary
we can choose the field K (a) to be a subfield of a real closure (R, <) of K, equipped
with a convex extension of v, in such a way that the given ordering on kg is induced
by < through this extension of v. Now again, our assertion for the ordered case
follows from Proposition B.14l O

We turn to the realization of countably infinite separable-algebraic extensions as
implicit constant fields.

Proposition 3.16. Let (K1|K,v) be a countably infinite separable-algebraic exten-
sion of non-trivially valued henselian fields. Then (K7,v) admits a pseudo Cauchy

—_—

sequence of transcendental type. In particular, there is an extension vs of v to K(x)
such that (K1 (z)|K1,v) is immediate, with x being the pseudo limit of this pseudo
Cauchy sequence. Moreover, K1 = I1C (K (z)|K,vs).

Proof. K1|K is a countably infinite union of finite subextensions. Thus, we can
choose a sequence a; , i € N, such that K'(a;)|K is separable-algebraic and K (a;) &
K(ait1) for all 4, and such that Ky = (J;cy K (a;). Through multiplication with
elements from K it is possible to choose each a; in such a way that

(3.19) va; 41 > max{va;, kras(a;, K(a1,...,a;-1))} .
We set

%
bi = E aj .
j=1

By construction, (b;);en is a pseudo Cauchy sequence. Suppose that z is a pseudo
limit of it, for some extension of v from K to Ki(x). Then by induction on i, we
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show that a; € K(x)", where K (x)" is chosen in some henselization of (K;(x),v).
First, by Lemma [Z2T v(z — a1) = v(x — b1) = vay > kras(ay, K) implies that
ar; € K(x)". If we have already shown that ai,...,a; € K(x)", then b, € K(z)",
and v(z — b; — aj41) = v(x — biy1) = va;42 > kras(a;4+1, K(aq,. .., a;)) implies that
ais1 € K(ar,...,a)(z = b)" = K(a1,...,a;) ()" = K (2)".

This proves that K; C K(x)". Since K;|K is infinite, this also proves that z
must be transcendental. As a pseudo Cauchy sequence of algebraic type would
admit an algebraic pseudo limit ([KA], Theorem 3), this yields that (b;)ien is a
pseudo Cauchy sequence of transcendental type in (K7, v).

By Theorem R.3 we can now extend v to K () so that (K;(z)|K7,v) is immedi-
ate and z is a pseudo limit of (b;);en. We choose any extension vz of v from K (z)

—

to K(z). By Lemma BTl we know that Ky = IC (K1 (z)|K1,vs). Hence,
K1 C K(z)" C IC(K(x)|K,vs) C IC(Ky(x)|Ky,v3) = K1,
which shows that Ky = IC (K (2)| K, vs). O

Since IC (K (z)|K,v) = IC (K"(z)|K",v), this proposition proves Theorem
in the case where K'|K" is countably infinite.

Proposition 3.17. Take any non-trivially valued field (K, v), any countably gener-
ated ordered abelian group extension Iy of vKK such that Tg/vK is a torsion group,
and any countably generated algebraic field extension ko of Kv. Assume that To/vK
or ko|Kwv is infinite. Then there exists an extension vy of v from K to K(z) such
that equations (BI8) hold.

Suppose that (K, <) is an ordered field and that v is convez. If ko is equipped with
an extension of the ordering induced by < on Kv, then this can be lifted through vs
to an ordering of K(x) which extends <.

Proof. We fix an extension of v to K. By Theorem there is a countably
generated separable-algebraic extension K7 |K b such that vK; = Ty and Kqv = ko .
Since at least one of the extensions I'g|vK and ko|Kv is infinite, K?'|K" is infinite
too, taking the henselizations in (K,v). Hence by Proposition there is an
extension vz of v to Ki(z) such that K; C K(z)" and (K;(z)|K1,v3) is immediate.
Consequently, K1 (x)" = K(z)", which gives us

v3K () = v3K (2)" = 13K () = vK; =T
and

K(z)vs = K(z)"vs = Ky (z)v3 = K1v =k .

Suppose that (K, <) is ordered, v is convex and ko is equipped with an extension
of the ordering induced by < on Kwv. Take any real closure (R, <) of (K, <) with
an extension of v to a convex valuation of R. By Corollary we can choose the
extension K;|K as a subextension of R|K, with the ordering on k¢ induced by <
through v. Since (Ki(z)|K1,vs) is immediate, Proposition I8 shows that there
is a lifting of the ordering of kg through v to an ordering of K;(z) which extends

the ordering < of K. Its restriction to K (z) is an extension of the ordering < of
K. O

To conclude this section, we now give an alternative

Proof of Theorem Let K be an algebraically closed field of characteristic p > 0.
On K (z), we again take v to be the z-adic valuation. We assume that K contains
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an element ¢ which is transcendental over the prime field of K. Then it can be
proved that K (x)" admits two infinite linearly disjoint towers of Galois extensions
of degree p and ramification index p. They can be defined as follows. For the first
tower, we set 79 = 271, take ;11 to be a root of X? — X —n; , and set L; := K (1;).
For the second tower, we set g = tz !, take ;11 to be a root of X? — X — tv;,
and set N; := K(¥;). Note that Lo = Ng = K(x), n; € Liy1 and ¥; € Njy1.
For each i > 0, we have that vy, = vd; = —%vx, and the extensions L;11|L; and
N;t1|N; are Galois of degree p with ramification index p. Consequently, the same
is true for the extensions L? ,|L" and N/ |N}* (note that L! = L; K(z)" and
NI'= N,.K(z)").

We set L := (J;ey Li and N := (J;cy Ni. By the above, L and N are linearly
disjoint from K(x)" over K(x). Thus, L" = L.K(z)" and N*" = N.K(z)" are
countably infinite separable-algebraic extensions of K(x)", and it can be proved
that they are linearly disjoint over K (x)". We use Proposition (with K replaced
by K (z)" and x replaced by y) to obtain an extension of v from K (z)" to K (z)"(y)
such that vK(z)"(y) = vLh = p%cZ and K(z)"(y)v = L"v = K(z)"v = K, and
such that the extension (K (x)"(y)|K(z)",v) has implicit constant field L (i.e.,
L" is relatively algebraically closed in K(z,y)" = (K(z)"(y))*). Since K(z) is
relatively algebraically closed in K(z,y), we see that N is linearly disjoint from
K(z,y) over K(z), and therefore N.K (z,y)|K(z,y) is again an infinite tower of
Galois extensions of degree p. Since N is linearly disjoint from K (z)" over K(z)
and N = N.K(x)" is linearly disjoint from L" over K(z)", we see that N is
linearly disjoint from L" over K(x). Since L" is relatively algebraically closed in
K(z,y)", this implies that N is linearly disjoint from K(x,y)" over K(z), and
hence, N.K(x,y) is linearly disjoint from K (z,y)" over K(x,y). Therefore, the
extension of v from K (z,y) to N.K (x,y) is unique. Since (K (z)"(y))" = K(x,y)",
we see that (K (x)"(y)|K(z,y),v) is immediate. So we have vK(z,y) = p%oZ,
which is p-divisible, and K(z,y)v = K, which is algebraically closed. Hence, the
extension (N.K (z,y)| K (z,y), v) is immediate, and so it is an infinite tower of Galois
extensions of degree p and defect p. O

Remark 3.18. For the above defined 7;, we have that the roots of X? — X — ;1
are 13,1 + 1,...,m; + p — 1. Therefore,

kras(n;, K (ni-1)) = 0
for all i. Setting a; := x'n;, we obtain
kras(a;, K (z)"(a1,...,a;-1)) = kras(a;, K(x)"(n;,_1))
= vz + kras(n;, K (2)"(ni_1)) = ivz

and va; 41 = (i + 1)ve — #vx > juz. This shows that va;+1 > va; and that
(BI9) is satisfied. So we can take y to be a pseudo limit of the Cauchy sequence
(Z;‘:l aj)ieN . That is,

(3.20) y = Zmim.
i=1

Comparing this with (3.5)), we see that we have replaced the term =P by n;,
which has an infinite expansion in powers of x, starting with 7 .
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4. RATIONAL FUNCTION FIELDS OF HIGHER TRANSCENDENCE DEGREE

This section is devoted to the proof of Theorems[L.6] and [[8. We will make use
of the following theorem, which we prove in [KU5|:

Theorem 4.1. Let (L|K,v) be a valued field extension of finite transcendence de-
gree > 0, with v non-trivial on L. Assume that one of the following two cases
holds:

transcendental case: vL/vK has rational rank at least 1 or Lv|Kwv is transcen-
dental;

separable-algebraic case: L|K contains a separable-algebraic subextension Lo|K
such that within some henselization of L, the corresponding extension LB|K" is
infinite.

Then each mazimal immediate extension of (L,v) has infinite transcendence de-
gree over L.

Note: The assertion need not be true for an infinite purely inseparable extension
LIK.
Now we can give the

Proof of Theorem Assume (K, v) is a valued field, n,p, 7, ¢ are non-negative
integers, I' is an ordered abelian group extension of vK such that I'/vK is of
rational rank p, and k|Kwv is a field extension of transcendence degree 7. We pick
a maximal set of elements oy, ...,a, in I' rationally independent over vK, and a
transcendence basis (1, ..., of k|Kwv.

We prove Part A of Theorem first. So assume further that n > p +
7, T|lvK and k|Kv are countably generated, and at least one of them is infi-
nite. By Lemma [20 there is a unique extension of v from K to K(z1,...,ZTpt+r)
such that vz; = a; for 1 < @ < p, and z2,45v = ¢ for 1 < ¢ < 7. Since
IlvK and k|Kv are countably generated, and since vK(z1,...,%,4s) contains
ai,...,o, and K(z1,...,2,4,)v contains (i,. .., ¢, it follows that the extensions
TlwK(z1,...,2p4+-) and k|K (21, ..., 2,4, )v are countably generated and algebraic.

Suppose first that at least one of these extensions is infinite. From our as-
sumption that I' # {0} it follows that v is non-trivial on K (z1,...,2,4+-). Hence
we can use Proposition to find an extension of v from K(x1,...,Zp+7) to
K(z1,...,2Zp1r+1) such that

vK(z1,...,Tppry1) =T and K(z1,...,Tppr41)0 =k,

and such that the implicit constant field of (K (z1,. .., Zppr41)|K(®1,. .., Tpsr), V)
is an infinite separable-algebraic extension of K (z1,... ,prrT)h. That means that
K(z1,...,%ptr41)"|K(21,...,2,4,)" contains an infinite separable-algebraic sub-
extension. Hence by the separable-algebraic case of Theorem F] each maximal im-
mediate extension of K (x1,...,Zp+r+1)" is of infinite transcendence degree. This
shows that we can find an immediate extension of v from K (z1,... 7xp+‘r+1)h to
K1, .., %pirs1)" (@piri2, ..o, Tn). Its restriction to K(x1,...,2,) is an imme-
diate extension of v from K(z1,...,Zppr11).

Now suppose that both extensions I'|vK (x1,...,%p4-) and k|K(21,...,Tppr )V
are finite. Then from our hypothesis that at least one of the extensions I'|lvK and
k|Kwv is infinite, it follows that p > 0 or 7 > 0. Hence by the transcendental
case of Theorem [£1], any maximal immediate extension of (K(x1,...,%p4r),v) is
of infinite transcendence degree. In combination with Proposition B.IH, this shows
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that there is an extension of v from K (z1,...,Zp+-) to K(x1,...,Zp+r+1) such that
vK(z1,...,2ppr41) =T and K(z1,...,Tptr41)v = k. By the transcendental case
of Theorem 4]}, every maximal immediate extension of (K (z1,...,%p4r41),v) is of
infinite transcendence degree. So we can find an extension of v to K(z1,...,x,) as
in the previous case.

In both cases we have that vK(z1,...,2,) = ' and K(z1,...,2,)v = k, as
required.

Now we prove Part B. So assume that n > p+ 7, and that I'|vK and k|Kv are
finitely generated.

I) First, we consider the case of p > 0. By Lemma there is an extension
of v from K to K(z1,...,Zp—14-) such that vz; = a; for 1 < i < p—1, and
Tp_14iv = ¢ for 1 < ¢ < 7. Since I'l'vK and k|Kv are finitely generated, and
since vK (z1,...,Tp—14-) contains ai,...,a,—1 and K(z1,...,%,—14-)v contains
Cis. -, G, it follows that the extension I'\vK (z1,...,2,—14,) is finitely generated
of rational rank 1 (and thus I' is of the form I'g & Z with I'o/vK(z1,...,Zp—14+)
finite), and the extension k| K (z1,...,%,—14-)v is finite.

If v is not trivial on K(z1,...,2,-147), then we can apply Proposition B3
to obtain an extension of v from K (x1,...,2p—14-) to K(z1,...,2,+-) such that
vK(z1,...,2p4-) =T and K(z1,...,2p4-)v = k. From the transcendental case of
Theorem 4] we see that any maximal immediate extension of (K (z1,...,2,47),v)
is of infinite transcendence degree. This shows that we can find an immediate
extension of v from K(z1,...,%Z,¢r) to K(z1,...,2y).

Now suppose that v is trivial on K (z1,...,Zp—14-). Then p =1 and v is trivial
on K. It follows that I ~ Z, and we pick a generator v of I'.

If n > 147, we modify the above procedure in such a way that we use Lemma 2.6
to choose an extension of v from K(z1,...,z,) to K(z1,...,214,) so that the
latter has value group Zvy = T and residue field Kv((y,...,(). Then we use
Proposition in combination with the transcendental case of Theorem EI to
find an extension of v to K(x1,...,x,) with value group I" and residue field k.

If n = 14 7, then by our assumption B2), k is a simple algebraic extension of
a rational function field &’ in 7 variables over Kv (or of Ku itself if 7 = 0), or a
rational function field in one variable over a finitely generated field extension kg of
Kv of transcendence degree 7 — 1.

Assume the first case holds. The extension of v to the rational function field

K(z1,...,2;) can be chosen such that k' = Kv(zyv,...,z,v) = K(x1,...,2,)v.
Then the extension k| K (x1, ...,z )v is simple algebraic, and by Remark there
is an extension of v to the rational function field K (z1, ..., 2, )(x14,) which satisfies

vK(2z1,...,0147) =Zy=T and K(x1,...,214-)v = k.

In the second case, we know that 7 > 1. The elements (; € k can be chosen in
such a way that (1,...,(,—1 form a transcendence basis of ko| Kv. We pick v € T,
v # 0. By Lemma[26] there is an extension of v from K to K(x1,...,x,) such that
ziv=_ for 1 <i<7-—1, and va, =~. Since K(z1,...,z;)v = Kv((1,...,(r—1),
we see that k is a rational function field in one variable over a finite extension of
K(z1,...,2;)v. Further, vK(z1,...,2;) =T. Now we use Proposition 315 to find
an extension of v to K(x1,...,x14,) with value group T' and residue field k.

IT) Second, suppose that p = 0. Then because of I" # {0}, we know that v
is non-trivial on K. If 7 > 0, then we proceed as follows. The case of n > 7 is
covered by Part A. So we assume that n = 7, and that k is a rational function
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field in one variable over a finitely generated field extension kg of Kv of transcen-
dence degree 7 — 1. Again we choose (i, ...,(,—1 to form a transcendence basis of
ko|Kv, and use Lemma [Z8] to find an extension of v from K to K(z1,...,2,-1)
such that z;v = (; for 1 <i <7 — 1. Again we obtain that k is a rational function
field in one variable over a finite extension of K (x1,...,2,—1)v. By assumption,
I'/vK(z1,...,2,—1) = ['/vK is finite. Hence by Proposition B.1 there is an exten-
sion of v from K (x1,...,2,—1) to K(z1,...,z,) such that vK(x1,...,2,) =T and
K(zy,...,z;:)v==F.

Finally, suppose that p = 0 = 7 and that there is an immediate extension
(K’,v) of (K,v) which is either infinite separable-algebraic or of transcendence de-
gree at least n. If the former holds, then we obtain from the separable-algebraic
case of Theorem [4]] that every maximal immediate extension of (K’,v) has infi-
nite transcendence degree. But a maximal immediate extension of (K’,v) is also a
maximal immediate extension of (K,v). Thus in all cases, we have the existence
of immediate extensions of (K, v) of transcendence degree at least n. Therefore,
we can choose an immediate extension of v from K to K(z1,...,on—1) such that
(K(x1,...,2n-1),v) still admits a transcendental immediate extension. The exten-
sions T'lvK = T'|vK(z1,...,2,—1) and k|Kv = k|K(x1,...,Z,—1)v are both finite
since they are finitely generated and algebraic. Hence by Proposition [B.T5] there is
an extension of v from K(z1,...,z,—1) to K(21,...,2,) such that

vK(x1,...,2,) =T and K(x1,...,25)v =k. O
Now we give the

Proof of Theorem [1.77] Corollary 1 shows that n > p+ 7. If n = p + 7, then
Corollary 27] tells us that vF|vK and Fv|Kwv are finitely generated extensions.
The fact that vF|vK and Fuv|Kv are always countably generated follows from
Theorem by induction on the transcendence degree n.

Suppose that F' admits a transcendence basis 1, ..., 2z, such that the residue
field extension Fv|K(x1,...,2Z,—1)v is of transcendence degree 1. (This is in par-
ticular the case when n = 7.) Then by Ohm’s Ruled Residue Theorem, F'v is a
rational function field in one variable over a finite extension of K (x1,...,Tn—1)v.
Whenever equality holds in (Z4)) for an extension L|K of finite transcendence de-
gree, it will hold in the respective inequality for any subextension of L|K. Hence if
n = p+ 7, then by Corollary 277 K(x1,...,2,—1)v|Kv is a finitely generated field
extension, and if n = 7, this extension is of transcendence degree 7 — 1. This yields
that B3) holds for k = F'v.

Now suppose that there does not exist such a transcendence basis, and that
n = p+ 7 with p = 1 and v is trivial on K. We pick any transcendence basis

X1,...,Tpn. Since Fu|K(x1,...,2n—1)v is algebraic and n = p + 7, the rational
rank of vF/vK(x1,...,2p—1) must be 1. Since p = 1 and v is trivial on K, this
means that v is also trivial on K (z1,...,2,—1). Hence, Kv = K and

K(xi,...,2pn-1)v=K(x1,...,Zn-1)

(modulo an isomorphism). Remark now shows that F'v is a simple algebraic
extension of K (x1,...,2,—1), which in turn is a rational function field in 7 variables
over K = Kwv, or equal to Kv if 7 = 0. Together with what we have shown before,
this proves that B2) holds for k = Fv.
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To conclude this proof, assume that p = 0 = 7. Then by Lemma [3.4] (FI~(|I~(, v)
is immediate, for any extension of v from F' to F.K. This shows that (K, v) admits
an immediate extension of transcendence degree n. O

Finally, we give the

Proof of Theorem [L8 We have to show that whenever we construct an extension
of the form (Lq|Li,v) with Kv C Lyv C Lov C k in the previous proof, then
the ordering of Lov induced by the given ordering of k can be lifted to an ex-
tension of the lifting that we have already obtained on L;. Whenever we apply
Propositions B.14, and BT, we obtain this already from the assertions of
these propositions. Whenever we apply Lemma [Z.6, we obtain this from Proposi-
tion .18, because in this case we always have that vLo is generated over vL; by
rationally independent values, and therefore 2vLoNvL; = 2vL; . Finally, whenever
(L2|L1,v) is an immediate extension, we can also apply Proposition 2-I8, because
2L Nwly = 2vLy Nvly = 2vL . O

5. HOMOGENEOUS SEQUENCES

In this section, we will develop special sequences which under certain tameness
conditions can be used to determine implicit constant fields.

5.1. Homogeneous approximations. Let (K, v) be any valued field and a, b ele-
ments in some valued field extension (L, v) of (K, v). We will say that a is strongly
homogeneous over (K,v) if a € K%P \ K, the extension of v from K to K(a)
is unique (or equivalently, K(a)|K is linearly disjoint from all henselizations of
(K,v)), and

(5.1) va = kras(a, K) .

Note that in this case, va = v(ca — a) for all automorphisms ¢ such that ca # a;
indeed, we have voa = va, and therefore va > v(oca — a) > va.

We will say that a is homogeneous over (K, v) if there is some d € K such
that a — d is strongly homogeneous over (K, v), i.e.,

v(a —d) = kras(a —d,K) = kras(a, K) .
We call a € L a homogeneous approximation of b over K if a is homogeneous
over K and v(b — a) > vb (and consequently, va = vb). From Corollary 2Z2T] we
obtain
Lemma 5.1. If a € L is a homogeneous approximation of b, then a lies in the

—_—

henselization of K (b) w.r.t. every extension of the valuation v from K (a,b) to K(b).
We will also exploit the following easy observation:

Lemma 5.2. Let (K',v) be any henselian extension field of (K, v) such thata ¢ K'.
If a is homogeneous over (K,v), then it is also homogeneous over (K’ v), and
kras(a, K) = kras(a, K'). If a is strongly homogeneous over (K, v), then it is also
strongly homogeneous over (K',v).

Proof. Suppose a — d is separable-algebraic over K and v(a — d) = kras(a — d, K)
for some d € K. Then a — d is also separable-algebraic over K'. Further,

kras(a — d, K') < kras(a — d, K)
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since restriction to K is a map sending {0 € Gal K’ | ga # a} into {0 € Gal K |
oa # a}. Hence,

v(a —d) <kras(a — d, K') < kras(a — d, K) = v(a — d),
which shows that equality holds everywhere. Thus,
kras(a, K') = kras(a — d, K') = kras(a — d, K) = kras(a, K).

Since (K’,v) is henselian by assumption, the extension of v from K’ to K'(a) is
unique. This shows that a — d is strongly homogeneous over (K’,v), and concludes
the proof of our assertions. O

The following gives the crucial criterion for an element to be (strongly) homo-
geneous over (K, v):

Lemma 5.3. Suppose that a € K and that there is some extension of v from K to
K (a) such that if e is the least positive integer for which eva € vK, then

a) e is not divisible by char Kv, and

b) there exists some ¢ € K such that vea® = 0, ca®v is separable-algebraic over
Kwv, and the degree of ca® over K is equal to the degree f of ca®v over Kv.

Then [K(a) : K] =ef, and if a ¢ K, then a is strongly homogeneous over (K, v).

Proof. We have

ef [K(a): K(a®)] - [K(a®) : K] = [K(a): K]

(vK(a): vK) - [K(a)v: Kv] > ef .

So equality holds everywhere, and we obtain [K(a) : K| = ef, (vK(a) : vK) = e
and [K(a)v : Kv] = f. By the fundamental inequality, the latter implies that the
extension of v from K to K (a) is unique.

Now assume that a ¢ K. Take two distinct conjugates ca # 7a of a and set
n = oa/Ta # 1. If 0a® # 7a®, then coa® = oca® and cra® = 7ca® are distinct
conjugates of ca®. By hypothesis, their residues are also distinct, and therefore
the residue of ca®/Ta® = n° is not 1. It follows that the residue of 1 is not 1. If
oa® = Ta®, then n is an e-th root of unity. Since e is not divisible by the residue
characteristic, it again follows that the residue of 7 is not equal to 1. Hence in both
cases, we obtain that v(n — 1) = 0, which shows that v(ca — Ta) = vra = va. We
have now proved (B1I). O

VA,
=

Lemma 5.4. Assume that b is an element in some algebraically closed valued field
extension (L,v) of (K,v). Suppose that there is some e € N not divisible by char Kv,
and some ¢ € K such that veb® = 0 and cb®v is separable-algebraic over Kv. If
e >0 or cb®v ¢ Kv, then we can find in L a strongly homogeneous approzimation
of b over K.

Proof. Take a monic polynomial g over K with v-integral coefficients whose reduc-
tion modulo v is the minimal polynomial of ¢b®v over Kv. Then let d € K be the
root of g whose residue is cb®v. The degree of d over K is the same as that of cb®v
over Kv. We have that v(c‘;e —1) > 0. So there exists ag € K with residue 1 and
such that a§ = . Then for a := agb, we find that v(a — b) = vb+ v(ag — 1) > vb
and ca® = d. By the foregoing lemma, this shows that a is a strongly homogeneous

approximation of b. O
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5.2. Homogeneous sequences. Let (K (z)|K,v) be any extension of valued fields.

—_—

We fix an extension of v to K ().

Let S be an initial segment of N, that is, S = N or S = {1,...,n} for some
n€Nor S=10. A sequence

6 = (ai)ies

of elements in K will be called a homogeneous sequence for z if the following
conditions are satisfied for all i € S (where we set ag := 0):
(HS) a; —a;_1 is a homogeneous approximation of z —a;_1 over K (ag,...,a;—1).

Recall that then by definition of “homogeneous”, a; ¢ K (ao, . .., a;—1)". We call
S the support of the sequence &. We set

Kgs = K(az|z€S)

If & is the empty sequence, then Kg = K.
From this definition, we obtain

Lemma 5.5. If1<i<j€S, then
(5.2) v(z—aj) > v(r—a) = v(aig —a;) .
If S =N, then (a;)ies is a pseudo Cauchy sequence with pseudo limit x.
Proof. If 1 < ¢ € S, then a; — a;—1 is a homogeneous approximation of z — a;_1 .
Hence, by definition,
v(ix —a;) = v —ai—1— (a; —a;—1)) > v(x —a;—1),
whence v(a; —a;—1) = min{v(r —a;),v(r —a;—1)} = v(r —a;—1). f i < j € 5, then
by induction, v(x — a;) > v(z — a;).
Suppose that S = N. Then it follows by induction that for all k > j > i > 1,
v(z —ag) > v(r—a;) > vz —a),
and therefore
v(ag —a;) = min{v(z —ag),v(r —a;)} = vz —a;) >v(r —a;)
= min{v(z —aj),v(z —a;)} = v(a; —a;) .
This shows that (a;)ies is a pseudo Cauchy sequence. The equality in (52) shows
that = is a pseudo limit of this sequence. O

Let us also observe the following:

Lemma 5.6. Take x,2' € L. If a € L is a homogeneous approrimation of x over
K and if v(x — 2') > vz, then a is also a homogeneous approximation of =’ over
K. If (a;)ies is a homogeneous sequence for x over K and if v(z —z') > v(r — ay)
for all k € S, then (a;)ies is also a homogeneous sequence for x' over K.

In particular, for each k € S such that k > 1, (a;);<k is a homogeneous sequence
for ay, over K.

Proof. Suppose a is a homogeneous approximation of x over K. Then v(z — a) >
vz. If also v(z — 2') > vz, then va’ = vx and v(z' — a) > max{v(z — 2'),v(z —a)}
> vx = vz’. This yields the first assertion.

Now assume that (a;);es is a homogeneous sequence for x over K and that
v(x —a') > v(x — ay) for all k € S. Then for all k € S,

v(2' — ag) = min{v(z’ — x),v(z — ax)} = v(z — ag).
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Hence,
vz —ap_1 — (ag —ax—1)) = v’ —ar) = v(r —ag)
> v —ak—1) = v(@' —ak_1),

showing that ay — ax_1 is also a homogeneous approximation of #’ — ax_1 . Hence,
(a;)ies is a homogeneous sequence for =’ over K. O

What is special about homogeneous sequences is described by the following
lemma:

Lemma 5.7. Assume that (a;);es is a homogeneous sequence for x over K. Then

(5.3) Ks C K(x)".
For every k € S, we have ay,...,ar € K(ap)". If S ={1,...,n}, then
(5.4) KL = K(a,)".

Proof. We use induction on k € S. Suppose that we have already shown that
ap—1 € K(x)h. As ap — ap_1 is a homogeneous approximation of x — ay_1, we
know from Lemma BTl that

ar —ak_1 € K(m—ak,l)h C K(x)h .

This proves (B3). Now all other assertions follow when we replace x by ay in the
above argument, using the fact that, by the previous lemma, (a;);<n is a homoge-
neous sequence for a,, over K. O

Proposition 5.8. Assume that & = (a;)ics is a homogeneous sequence for x over
K with support S = N. Then (a;);en is a pseudo Cauchy sequence of transcendental
type in (Kg,v) with pseudo limit x, and (Kg(z)|Ke,v) is immediate and pure.

Proof. By Lemma [5.3] (a;)ien is a pseudo Cauchy sequence with pseudo limit .
Suppose it were of algebraic type. Then by [KA], Theorem 3, there would exist
some algebraic extension (Kg(b)|Kes,v) with b a pseudo limit of the sequence.
But then v(z — b) > v(z — ag) for all k € S and, by Lemma B.6] (a;)ies is also
a homogeneous sequence for b over K. Hence by Lemma b1, K g c K" =
K"(b). Since b is algebraic over K, the extension K"(b)|K" is finite. On the
other hand, K, g|K his infinite since, by the definition of homogeneous elements,
ar ¢ K(a; | 1 <i < k)" for every k € N, and therefore each extension K (a; | 1 <
i <k+1)"K(a; | 1 <i<k)"is non-trivial. This contradiction shows that the
sequence is of transcendental type. Hence by definition, (K¢ (z)|Ke,v) is pure.
Further, it follows from Lemma 24 that (Kg(z)|Ke,v) is immediate. O

This proposition leads to the following definition. A homogeneous sequence
S for x over K will be called (weakly) pure homogeneous if (Kg(z)|Kg,v) is
(weakly) pure in z. Hence if S = N, then & is always a pure homogeneous sequence.
The empty sequence is a (weakly) pure homogeneous sequence for x over K if and
only if already (K (z)|K,v) is (weakly) pure in z.

Theorem 5.9. Suppose that & is a (weakly) pure homogeneous sequence for x over
K. Then

KL = 1C(K(z)|K,v) .
Further, Ksv is the relative algebraic closure of Kv in K(x)v, and the torsion
subgroup of vK (x)/vKe is finite. If & is pure, then vKg is the relative divisible
closure of vK in vK(x).
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Proof. The assertions follow from Lemmal[3.5] Lemma[Z.T0 and Lemmal3.7, together
with the fact that because Kg|K is algebraic, the same holds for vKg|vK and
Kesv|Kv by Lemma 2711 O

5.3. Conditions for the existence of homogeneous sequences. Now we have
to discuss for which extensions (K (z)|K,v) there exist homogeneous sequences.

An algebraic extension (L| K, v) of henselian fields is called tame if the following
conditions hold:

(TE1l) Lv|Kw is separable,

(TE2) if char Kv = p > 0, then the order of each element in vL/vK is prime to p,
and

(TE3) [K': K] = (vK':vK)[K'v: Kv] holds for every finite subextension K’'|K
of L|IK.

Condition (TE3) means that equality holds in the fundamental inequality (2.
If L'|K is any subextension of L|K, then (L|K,v) is a tame extension if and only if
(L|L',v) and (L'|K,v) are (this is easy to prove if L|K is finite). Further, it is well
known that for (K, v) henselian, the ramification field of the extension (K%°P|K,v)
is the unique maximal tame extension of (K, v) (cf. [E]). A henselian valued field
(K,v) is called a tame field if all its algebraic extensions are tame, or equivalently,
the following conditions hold:

(T1) Kw is perfect,
(T2) if char Kv =p > 0, then vK is p-divisible, and
(T3) for every finite extension K'|K, [K': K| = (vK':vK)[K'v: Kv].

Note that every valued field with a residue field of characteristic zero is tame;
this is a consequence of the Lemma of Ostrowski (cf. [R]). It follows directly from
the definition together with the multiplicativity of ramification index and inertia
degree that every finite extension of a tame field is again a tame field. If (K,v)
is a tame field, then condition (T3) shows that (K, v) does not admit any proper
immediate algebraic extensions; hence by Theorem 3 of [KA], every pseudo Cauchy
sequence in (K, v) without a pseudo limit in K must be of transcendental type.

If an element a € K satisfies the conditions of Lemma 5.3, then (K (a)|K,v) is
a tame extension. The following implication is also true, as was noticed by Sudesh
K. Khanduja (cf. [KHII], Theorem 1.2):

Proposition 5.10. Suppose that (K,v) is henselian. If a is homogeneous over
(K,v), then (K (a)|K,v) is a tame extension. If & is a homogeneous sequence over
(K,v), then Kg is a tame extension of K.

Proof. Since K (a—d) = K(a) for d € K, we may assume w.l.o.g. that a is strongly
homogeneous over (K, v). If (K(a)|K,v) were not a tame extension, then a would
not lie in the ramification field of the extension (K*°P|K,v). So there would exist an
automorphism ¢ in the ramification group such that ca # a. But by the definition
of the ramification group,

v(oa —a) > va = kras(a, K) ,

a contradiction.
The second assertion is proved using the first assertion and the fact that a (pos-
sibly infinite) tower of tame extensions is itself a tame extension. O

In fact, it can also be shown that va = kras(a, K) implies that a satisfies the
conditions of Lemma [5.3]
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We can give the following characterization of elements in tame extensions:

Proposition 5.11. An element b € K belongs to a tame extension of the henselian
field (K, v) if and only if there is a finite homogeneous sequence aq,...,ax for a
over (K,v) such that b € K(ay).

Proof. Suppose that such a sequence exists. By the foregoing proposition, Kg is a
tame extension of K. Since K(aq,...,ax) = K(ay) by Lemmal57, it contains b.
For the converse, let b be an element in some tame extension of (K, v). Then b
satisfies the assumptions of Lemma (.4, and hence there is a homogeneous approxi-
mation a; € K of bover K. By the foregoing proposition, K (a1) is a tame extension
of K, and therefore, by the general facts we have noted following the definition of
tame extensions, K (a1,b — a1) is a tame extension of K(a;). We repeat this step,
replacing b by b — a1 . By induction, we build a homogeneous sequence for b over
K. Tt cannot be infinite, since b is algebraic over K (cf. Proposition [5.8]). Hence it
stops with some element aj . Our construction shows that this can only happen if
be K(ai,...,ar) = K(ag). O

Proposition 5.12. Assume that (K,v) is a henselian field. Then (K,v) is a tame
field if and only if for every element x in any extension (L,v) of (K,v) there exists
a weakly pure homogeneous sequence for x over K, provided that x is transcendental
over K.

Proof. First, let us assume that (K, v) is a tame field and that x is an element in
some extension (L,v) of (K,v), transcendental over K. We set ag = 0. We assume
that £ > 0 and that a; for i < k are already constructed. Like K, also the finite
extension Ky := K(ao,...,ax) is a tame field. Therefore, if = is the pseudo limit
of a pseudo Cauchy sequence in K}, , then this pseudo Cauchy sequence must be of
transcendental type, and Ky(x)|K} is pure and hence weakly pure in x.

If Kj(x)| Ky is weakly pure in x, then we take ay to be the last element of & if
k >0, and & to be empty if k = 0.

Assume that this is not the case. Then x cannot be the pseudo limit of a pseudo
Cauchy sequence without pseudo limit in K . So the set v(x — ax, — K} ) must have
a maximum, say ¢ — ay — d with d € K. Since we assume that Kj(z)|K) is not
weakly pure in z, there exist e € N and ¢ € K}, such that ve(z — ar, — d)® = 0 and
c(x — ap — d)° is algebraic over Kjv. Conditions (T1) and (T2) tell us that e can
be chosen to be prime to char Kv and that ¢(x — a — d)®v is separable-algebraic
over Kjv. Since v(z — ar — d) is maximal in v(z — ar — K}), we must have that
e>1lorc(r—ap—d)v ¢ K.

Now Lemma [5.4]shows that there exists a homogeneous approximation a € K of
x—ag —d over Ky ; so a+d is a homogeneous approximation of z — ag over Ky, and
we set ax4+1 := ar + a + d. This completes our induction step. If our construction
stops at some k, then Kj(x)| K} is weakly pure in 2 and we have obtained a weakly
pure homogeneous sequence. If the construction does not stop, then S = N and the
obtained sequence is pure homogeneous.

For the converse, assume that (K, v) is not a tame field. We choose an element
b € K such that K (b)|K is not a tame extension. On K (b, z) we take the valuation
Uy~ With v an element in some ordered abelian group extension such that v > vK.
Choose any extension of v to K (). Since vK is cofinal in in vk, we have that v >
vK. Since b € K, we have v € vK (z). Hence, (K (z)|K,v) is value-transcendental.
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Now suppose that there exists a weakly pure homogeneous sequence & for
x over K. By Lemma B3, also (Kg(x)|Ks,v) is value-transcendental. Since
(Ke(z)|Ks,v) is also weakly pure, it follows that there must be some ¢ € Kg
such that z — ¢ is a value-transcendental element (all other cases in the definition
of “weakly pure” lead to immediate or residue-transcendental extensions). But
if ¢ # b then v(b — ¢) € vK, and thus v(c — b) < 7. This implies v(z — ¢) =
min{v(z—b),v(b—c)} = v(b—c) € vK, a contradiction. This shows that b = ¢ € K.
On the other hand, Kg is a tame extension of K by Proposition .10 and cannot
contain b. This contradiction shows that there cannot exist a weakly pure homo-
geneous sequence for x over K. O

6. APPLICATIONS

Let us show how to apply our results to power series fields. We denote by k((G))
the field of power series with coefficients in the field £ and exponents in the ordered
abelian group G.

Theorem 6.1. Let (K,v) be a henselian subfield of a power series field k((G))
such that v is the restriction of the canonical valuation of k((G)). Suppose that K
contains all monomials of the form ct” for c € Kv C k and v € vK CT. Consider

a power series
z = Zcit%,
i€N

where (7v;)ien is a strictly increasing sequence in G, all ¢; € k are separable-algebraic
over Kv, and for each i there is an integer e; > 0 prime to the characteristic of Kv
and such that e;y; € vK. Then, upon taking the henselization of K(z) in k((G)),
we obtain that K (c;t" | i € N) C K(2)". Consequently, vK(z) contains all ; , and
if vi € vK for all i € N, then K(z)v contains all ¢; .

IfvK + >, Zvi JvK or Kv(c; | i € N)|Kv is infinite, then z is transcendental
over K, we have IC (K (z)|K,v) = K(c;t" | i € N), and

a) vK(z) is the group generated over vK by the elements ; ,

b) if vi € vK for alli € N, then K(z)v = Kuv(c; | i € N).

Proof. We derive a homogeneous sequence & from z as follows. We set ag = 0. If
all ¢; are in Kv and all ; are in vK, then we take & to be the empty sequence.
Otherwise, having chosen 7; € N and defined

a; = E cit™
1<i<i;

for all j < m, we proceed as follows. We let ¢ be the first index in the power series
Z — Gm—1 for which ¢t ¢ K(aq,...,am—1); if such an index does not exist, we let
am—1 be the last element of &. Otherwise, we set

iy = and a,, = Z c;t.

1<i<im
We have
ct” = ay — a1 —d with d = g cit’ € K(ay,...,am-1) -
G —1 <i<lt

By assumption, ejvcgt?” = epyp € vK, and hence ¢ := ¢t~ € K. We have that
c(cgt)® = ¢,*. Since ¢, is separable-algebraic over Kv, the same holds for c*.
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Since v is trivial on k, the degree of c¢;*v over Kv is equal to that of ¢;* over
K. Tt now follows by Lemma that cgt7 is strongly homogeneous over K. By
Lemma [5.2] it follows that it is also strongly homogeneous over the henselian field
K(ai,...,am—1). Therefore, a,, — a,,—1 is homogeneous over K(ay,...,am—_1).
Further, v(z — am-1 — (@m — am—1)) = v(z — am) = Ye41 > Yo > V(2 — am—1)-
This proves that a,, — a;,—1 is a homogeneous approximation of z — a,,_1 over
K(ag,...,am-1). By induction, we obtain a homogeneous sequence & for z in
k((G)). It now follows from Lemma B.7 that K(¢;t" | i € N) = K(a; | j € S) C
K (2)"; thus, v; = ve;t"i € vK(2) for all i € N. If 4; € vK and hence t7 € K, then
c; € K(z)"; since the residue map is the identity on elements of k, this implies that
¢i € K(2)v.

Now assume that vK + Y2 Zv;/vK or Kv(c; | i € N)|Kv is infinite. Then &
must be infinite, and it follows from Proposition 5.8 that z is a pseudo limit of the
pseudo Cauchy sequence (a;);en of transcendental type. Thus, z is transcendental
over K by Lemma Theorem [5.9] now shows that

IC (K (2)|K,v) = K(cit™ | i € N)

and

vK(z) = vK(cit" | i €N), K(z)v=K(c;t" |i € N)v.
Since K(¢;t" | i € N) C K(¢;,t7 | i € N), for the proof of assertion a) it now
suffices to show that the value group of the latter field is generated over vK by the
~; , and that its residue field is generated over Kv by the ¢;. As t7 € K for every
v € vK, we have

L
(vK + ZZ% oK) = [K(#

i=1

1<i<{):K].

On the other hand,

14
1§i§€):vK)2(vK+ZZ%-:vK),
i=1

1<i<e)fori=1,...,4. We

Kt |1<i<t):K] > (vK(t"

where the last inequality holds since 7; € vK (¢
obtain that for all £ € N

14

oKt |1 <i<¥) :vK—i-ZZ'yi
i=1
and
Kt"|1<i<{lv=Kv.

This implies that vK (¢ |i € N) =vK + Y .0, Zy; and Kt | i € N)v = K.
Set K':= K(t" |1 € N). As K'v=Kv C K C K’, we have

[K'v(c; |1<i<t):K'v] > [K'(¢; |1<i<0): K'].
On the other hand,
[K'(c; |1<i<0):K'| > [K'(c;|1<i<lv:K'v] > [Kv(e;|1<i<t): K'v],

where the last inequality holds since ¢; € K'(¢; | 1 < i < v fori=1,...,£. We
obtain K'(¢; | 1 <i < fv=Kuv(e;|1<i<{)and vK'(c; |1 <4 <¥) =vK'.
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This implies that

[ee]
i€N)=vK'(c; | i €N) =vK' =vK + > Zy

vK (¢t
i=1
and
K(ci,t" |i e Nju=K'(¢; | i € Njv=K'v(¢; | i € N) = Kov(c; | i € N).
This proves assertions a) and b). O

Remark 6.2. Assertions a) and b) of the previous theorem will also hold if K =
Kv((vK)). Indeed, if Gy denotes the subgroup of G generated by the v; over Kv,
and ko = Kv(c; | i € N), then K(z) C ko((Go)), and therefore vK(z) C Gy and
K(z)v Cko.

Our methods also yield an alternative proof of the following well known fact:

Theorem 6.3. The algebraic closure of the field Q, of p-adic numbers is not com-
plete.

Proof. Choose any compatible system of n-th roots p'/™ of p, that is, such that
(p'/m™n)ym = pl/" for all m,n € N. For i € N, choose any n; € N not divisible by
p, and set y; =1 + nl if n; > 1, and ~; = i otherwise. Further, choose ¢; in some

fixed set of representatives in @) of its residue field I,E‘\; such that the degree of ¢
over @, is equal to the degree of ¢;" v, over Q,v, = F,. Then set

(6.1) b = Z cip .
1<j<i

Since v; < ;41 for all ¢ and the sequence (7;);en is cofinal in the value group Q of
@,, the sequence (b;);en is a Cauchy sequence in (@,, vp). If this field were complete,
it would contain a pseudo limit z to every such Cauchy sequence. On the other
hand, as in the proof of Theorem Bl one shows that Q,(c;pY | i € N) C Q,(2)",
and that

a) vQp(z) is the group generated over Z by the elements ~; ,

b) ifv; € Z for all i € N, then Q,(2)v =Fp(c;vp | ¢ € N), and

c) if vQp(2)/Z or Fp(civp | ¢ € N)|F, is infinite, then z is transcendental over

Qp.
Hence, if we choose (n;);en to be a strictly increasing sequence and ¢; = 1 for

all 4, or if we choose n; =1 for all i and the elements ¢; of increasing degree over

Qp, then z will be transcendental over @, . Since z lies in the completion of Q,,
we have now proved that this completion is transcendental over Q. ([

With the same method, we can also prove another well known result:

Theorem 6.4. The completion C, of@; admits a pseudo Cauchy sequence without
a pseudo limit in C, . Hence, C, is not mazimal and not spherically complete.

Proof. In the same setting as in the foregoing proof, we now choose ¢; = 1 for all 4.
Further, we choose (n;)ien to be a strictly increasing sequence and set y; := 1 — nl
Then (b;);en is a pseudo Cauchy sequence. Suppose it admitted a pseudo limit y
in C,. Then, using that @, is dense in C,, we could choose z € @, such that

vp(y — 2z) > 1. Since 1 > ~; for all 4, it would follow that also z is a pseudo limit
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of (b;)ien . But as in the foregoing proof one shows that z must be transcendental
over Q, . This contradiction shows that (b;)ien cannot have a pseudo limit in C,, .
By the results of [KA], this implies that C, admits a proper immediate extension,
which shows that C, is not maximal. With the elements b; defined as in (6.1)), we
also find that the intersection of the nest ({a € C, | v(a — b;) > vit1})ien of balls

is empty. Hence, C, is not spherically complete. O
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