Viscosity solutions, almost everywhere solutions and explicit formulas
Authors:
Bernard Dacorogna and Paolo Marcellini
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 4643-4653
MSC (2000):
Primary 34A60, 35F30, 49L25
DOI:
https://doi.org/10.1090/S0002-9947-04-03506-8
Published electronically:
January 23, 2004
MathSciNet review:
2067137
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Consider the differential inclusion in
. We exhibit an explicit solution that we call fundamental. It also turns out to be a viscosity solution when properly defining this notion. Finally, we consider a Dirichlet problem associated to the differential inclusion and we give an iterative procedure for finding a solution.
- 1. Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411
- 2. Fabio Camilli and Antonio Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems, Indiana Univ. Math. J. 48 (1999), no. 3, 1111–1131. MR 1736967, https://doi.org/10.1512/iumj.1999.48.1678
- 3. P. Cardaliaguet, B. Dacorogna, W. Gangbo, and N. Georgy, Geometric restrictions for the existence of viscosity solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), no. 2, 189–220 (English, with English and French summaries). MR 1674769, https://doi.org/10.1016/S0294-1449(99)80012-2
- 4. B. Dacorogna, R. Glowinski and T.W. Pan, Numerical methods for the solution of a system of eikonal equations with Dirichlet boundary conditions, Comptes Rendus Acad. Sci. Paris, 336 (2003), 511-518.
- 5. Bernard Dacorogna and Paolo Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), no. 1, 1–37. MR 1448710, https://doi.org/10.1007/BF02392708
- 6. Bernard Dacorogna and Paolo Marcellini, Implicit partial differential equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1702252
- 7. Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- 8.
H. Ischii and P. Loreti, Relaxation in an
-optimization problem, Proc. Royal Soc. Edinburgh, 133 (2003), 599-615.
- 9. Hitoshi Ishii and Mythily Ramaswamy, Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2187–2213. MR 1361736, https://doi.org/10.1080/03605309508821168
- 10. Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
- 11. Paolo Marcellini, Nonconvex integrals of the calculus of variations, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 16–57. MR 1079758, https://doi.org/10.1007/BFb0084930
- 12. R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- 13. Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34A60, 35F30, 49L25
Retrieve articles in all journals with MSC (2000): 34A60, 35F30, 49L25
Additional Information
Bernard Dacorogna
Affiliation:
Départment de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
Email:
bernard.dacorogna@epfl.ch
Paolo Marcellini
Affiliation:
Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy
Email:
marcell@math.unifi.it
DOI:
https://doi.org/10.1090/S0002-9947-04-03506-8
Keywords:
Almost everywhere solutions,
viscosity solutions of nonlinear first order partial differential equations
Received by editor(s):
December 2, 2002
Received by editor(s) in revised form:
August 21, 2003
Published electronically:
January 23, 2004
Article copyright:
© Copyright 2004
American Mathematical Society