Viscosity solutions, almost everywhere solutions and explicit formulas
HTML articles powered by AMS MathViewer
- by Bernard Dacorogna and Paolo Marcellini
- Trans. Amer. Math. Soc. 356 (2004), 4643-4653
- DOI: https://doi.org/10.1090/S0002-9947-04-03506-8
- Published electronically: January 23, 2004
- PDF | Request permission
Abstract:
Consider the differential inclusion $Du\in E$ in $\mathbb {R}^{n}$. We exhibit an explicit solution that we call fundamental. It also turns out to be a viscosity solution when properly defining this notion. Finally, we consider a Dirichlet problem associated to the differential inclusion and we give an iterative procedure for finding a solution.References
- Martino Bardi and Italo Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia. MR 1484411, DOI 10.1007/978-0-8176-4755-1
- Fabio Camilli and Antonio Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems, Indiana Univ. Math. J. 48 (1999), no. 3, 1111–1131. MR 1736967, DOI 10.1512/iumj.1999.48.1678
- P. Cardaliaguet, B. Dacorogna, W. Gangbo, and N. Georgy, Geometric restrictions for the existence of viscosity solutions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 16 (1999), no. 2, 189–220 (English, with English and French summaries). MR 1674769, DOI 10.1016/S0294-1449(99)80012-2
- B. Dacorogna, R. Glowinski and T.W. Pan, Numerical methods for the solution of a system of eikonal equations with Dirichlet boundary conditions, Comptes Rendus Acad. Sci. Paris, 336 (2003), 511-518.
- Bernard Dacorogna and Paolo Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), no. 1, 1–37. MR 1448710, DOI 10.1007/BF02392708
- Bernard Dacorogna and Paolo Marcellini, Implicit partial differential equations, Progress in Nonlinear Differential Equations and their Applications, vol. 37, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1702252, DOI 10.1007/978-1-4612-1562-2
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- H. Ischii and P. Loreti, Relaxation in an $L^{\infty }$-optimization problem, Proc. Royal Soc. Edinburgh, 133 (2003), 599-615.
- Hitoshi Ishii and Mythily Ramaswamy, Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2187–2213. MR 1361736, DOI 10.1080/03605309508821168
- Pierre-Louis Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667669
- Paolo Marcellini, Nonconvex integrals of the calculus of variations, Methods of nonconvex analysis (Varenna, 1989) Lecture Notes in Math., vol. 1446, Springer, Berlin, 1990, pp. 16–57. MR 1079758, DOI 10.1007/BFb0084930
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
Bibliographic Information
- Bernard Dacorogna
- Affiliation: Départment de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Email: bernard.dacorogna@epfl.ch
- Paolo Marcellini
- Affiliation: Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy
- Email: marcell@math.unifi.it
- Received by editor(s): December 2, 2002
- Received by editor(s) in revised form: August 21, 2003
- Published electronically: January 23, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4643-4653
- MSC (2000): Primary 34A60, 35F30, 49L25
- DOI: https://doi.org/10.1090/S0002-9947-04-03506-8
- MathSciNet review: 2067137