Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones
HTML articles powered by AMS MathViewer
- by Manuel Ritoré and César Rosales
- Trans. Amer. Math. Soc. 356 (2004), 4601-4622
- DOI: https://doi.org/10.1090/S0002-9947-04-03537-8
- Published electronically: April 27, 2004
- PDF | Request permission
Abstract:
We study the problem of existence of regions separating a given amount of volume with the least possible perimeter inside a Euclidean cone. Our main result shows that nonexistence for a given volume implies that the isoperimetric profile of the cone coincides with the one of the half-space. This allows us to give some criteria ensuring existence of isoperimetric regions: for instance, local convexity of the cone at some boundary point. We also characterize which are the stable regions in a convex cone, i.e., second order minima of perimeter under a volume constraint. From this it follows that the isoperimetric regions in a convex cone are the euclidean balls centered at the vertex intersected with the cone.References
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 420406, DOI 10.1090/memo/0165
- Hiroshi Mori, On surfaces of right helicoid type in $H^{3}$, Bol. Soc. Brasil. Mat. 13 (1982), no. 2, 57–62. MR 735120, DOI 10.1007/BF02584676
- Pierre Bérard and Daniel Meyer, Inégalités isopérimétriques et applications, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 513–541 (French). MR 690651
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Enrico Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682, DOI 10.1007/978-1-4684-9486-0
- E. Gonzalez, U. Massari, and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), no. 1, 25–37. MR 684753, DOI 10.1512/iumj.1983.32.32003
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- Michael Grüter, Boundary regularity for solutions of a partitioning problem, Arch. Rational Mech. Anal. 97 (1987), no. 3, 261–270. MR 862549, DOI 10.1007/BF00250810
- Michael Grüter, Optimal regularity for codimension one minimal surfaces with a free boundary, Manuscripta Math. 58 (1987), no. 3, 295–343. MR 893158, DOI 10.1007/BF01165891
- Michael Grüter and Jürgen Jost, Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 129–169. MR 863638
- Pierre-Louis Lions and Filomena Pacella, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc. 109 (1990), no. 2, 477–485. MR 1000160, DOI 10.1090/S0002-9939-1990-1000160-1
- Frank Morgan, Regularity of isoperimetric hypersurfaces in Riemannian manifolds, Trans. Amer. Math. Soc. (to appear).
- Frank Morgan, Riemannian geometry, 2nd ed., A K Peters, Ltd., Wellesley, MA, 1998. A beginner’s guide. MR 1600519
- Frank Morgan, Geometric measure theory, 3rd ed., Academic Press, Inc., San Diego, CA, 2000. A beginner’s guide. MR 1775760
- Frank Morgan and David L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), no. 3, 1017–1041. MR 1803220, DOI 10.1512/iumj.2000.49.1929
- Frank Morgan and Manuel Ritoré, Isoperimetric regions in cones, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2327–2339. MR 1885654, DOI 10.1090/S0002-9947-02-02983-5
- Manuel Ritoré, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), no. 5, 1093–1138. MR 1883725, DOI 10.4310/CAG.2001.v9.n5.a5
- Manuel Ritoré, The isoperimetric problem in complete surfaces of nonnegative curvature, J. Geom. Anal. 11 (2001), no. 3, 509–517. MR 1857855, DOI 10.1007/BF02922017
- Antonio Ros and Enaldo Vergasta, Stability for hypersurfaces of constant mean curvature with free boundary, Geom. Dedicata 56 (1995), no. 1, 19–33. MR 1338315, DOI 10.1007/BF01263611
- César Rosales, Isoperimetric regions in rotationally symmetric convex bodies, Indiana U. Math. J. 52 (2003), no. 5, 1201–1214.
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Peter Sternberg and Kevin Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63–85. MR 1650327
- Peter Sternberg and Kevin Zumbrun, On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint, Comm. Anal. Geom. 7 (1999), no. 1, 199–220. MR 1674097, DOI 10.4310/CAG.1999.v7.n1.a7
- Edward Stredulinsky and William P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal. 7 (1997), no. 4, 653–677. MR 1669207, DOI 10.1007/BF02921639
- Henry C. Wente, A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature, Pacific J. Math. 147 (1991), no. 2, 375–379. MR 1084716
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Manuel Ritoré
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, E–18071 Granada, Spain
- Email: ritore@ugr.es
- César Rosales
- Affiliation: Departamento de Geometría y Topología, Universidad de Granada, E–18071 Granada, Spain
- Email: crosales@ugr.es
- Received by editor(s): March 6, 2003
- Received by editor(s) in revised form: July 22, 2003
- Published electronically: April 27, 2004
- Additional Notes: Both authors were supported by MCyT-Feder research project BFM2001-3489
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4601-4622
- MSC (2000): Primary 53C20, 49Q20
- DOI: https://doi.org/10.1090/S0002-9947-04-03537-8
- MathSciNet review: 2067135