The Perron-Frobenius theorem for homogeneous, monotone functions
HTML articles powered by AMS MathViewer
- by Stéphane Gaubert and Jeremy Gunawardena
- Trans. Amer. Math. Soc. 356 (2004), 4931-4950
- DOI: https://doi.org/10.1090/S0002-9947-04-03470-1
- Published electronically: March 23, 2004
- PDF | Request permission
Abstract:
If $A$ is a nonnegative matrix whose associated directed graph is strongly connected, the Perron-Frobenius theorem asserts that $A$ has an eigenvector in the positive cone, $(\mathbb R^{+})^n$. We associate a directed graph to any homogeneous, monotone function, $f: (\mathbb R^{+})^n \rightarrow (\mathbb R^{+})^n$, and show that if the graph is strongly connected, then $f$ has a (nonlinear) eigenvector in $(\mathbb R^{+})^n$. Several results in the literature emerge as corollaries. Our methods show that the Perron-Frobenius theorem is “really” about the boundedness of invariant subsets in the Hilbert projective metric. They lead to further existence results and open problems.References
- Marianne Akian and Stéphane Gaubert, Spectral theorem for convex monotone homogeneous maps, and ergodic control, Nonlinear Anal. 52 (2003), no. 2, 637–679. MR 1938367, DOI 10.1016/S0362-546X(02)00170-0
- S. Amghibech and C. Dellacherie. Une version non-linéaire, d’après G. J. Olsder, du théorème d’existence et d’unicité d’une mesure invariante pour une transition sur un espace fini. Séminaire de Probabilités de Rouen, 1994.
- François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat, Synchronization and linearity, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1992. An algebra for discrete event systems. MR 1204266
- John Bather, Optimal decision procedures for finite Markov chains. II. Communicating systems, Advances in Appl. Probability 5 (1973), 521–540. MR 426858, DOI 10.2307/1425832
- Abraham Berman and Robert J. Plemmons, Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics, vol. 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original. MR 1298430, DOI 10.1137/1.9781611971262
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- T. Bousch and J. Mairesse. Fonctions topicales à portée finie et fonctions uniformément topicales. Préprint LIAFA 2003-002.
- A. D. Burbanks, R. D. Nussbaum, and C. T. Sparrow. Continuous extension of order-preserving homogeneous maps. Kybernetica, 39(2):205–215, 2003.
- Michael G. Crandall and Luc Tartar, Some relations between nonexpansive and order preserving mappings, Proc. Amer. Math. Soc. 78 (1980), no. 3, 385–390. MR 553381, DOI 10.1090/S0002-9939-1980-0553381-X
- C. Dellacherie, Modèles simples de la théorie du potentiel non linéaire, Séminaire de Probabilités, XXIV, 1988/89, Lecture Notes in Math., vol. 1426, Springer, Berlin, 1990, pp. 63–104 (French). MR 1071533, DOI 10.1007/BFb0083758
- Erik Dietzenbacher, The nonlinear Perron-Frobenius theorem: perturbations and aggregation, J. Math. Econom. 23 (1994), no. 1, 21–31. MR 1268115, DOI 10.1016/0304-4068(94)90033-7
- S. Gaubert and J. Gunawardena. A non-linear hierarchy for discrete event dynamical systems. Proceedings of WODES’98, IEE, Cagliari, Italy, August 1998.
- S. Gaubert and J. Gunawardena. Existence of eigenvectors for monotone homogeneous functions. Technical Report HPL-BRIMS-99-008, Hewlett-Packard Labs, 1999.
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- Max-Plus Working Group. Max-plus algebra and applications to system theory and optimal control. In Proceedings of the International Congress of Mathematicians, Zürich, 1994. Birkhäuser, 1995.
- Jeremy Gunawardena, An introduction to idempotency, Idempotency (Bristol, 1994) Publ. Newton Inst., vol. 11, Cambridge Univ. Press, Cambridge, 1998, pp. 1–49. MR 1608370, DOI 10.1017/CBO9780511662508.003
- J. Gunawardena. From max-plus algebra to nonexpansive maps: a nonlinear theory for discrete event systems. Theoretical Computer Science, 293:141–167, 2003.
- J. Gunawardena and M. Keane. On the existence of cycle times for some nonexpansive maps. Technical Report HPL-BRIMS-95-003, Hewlett-Packard Labs, 1995.
- Elon Kohlberg, Invariant half-lines of nonexpansive piecewise-linear transformations, Math. Oper. Res. 5 (1980), no. 3, 366–372. MR 594851, DOI 10.1287/moor.5.3.366
- Elon Kohlberg and John W. Pratt, The contraction mapping approach to the Perron-Frobenius theory: why Hilbert’s metric?, Math. Oper. Res. 7 (1982), no. 2, 198–210. MR 665557, DOI 10.1287/moor.7.2.198
- Vassili N. Kolokoltsov, Nonexpansive maps and option pricing theory, Kybernetika (Prague) 34 (1998), no. 6, 713–724. 5th IEEE Mediterranean Conference on Control and Systems (Paphos, 1997). MR 1695373
- V. N. Kolokoltsov and V. P. Maslov. Idempotent Analysis and Applications. Kluwer Academic, 1997.
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- V. P. Maslov and S. N. Samborskiĭ (eds.), Idempotent analysis, Advances in Soviet Mathematics, vol. 13, American Mathematical Society, Providence, RI, 1992. MR 1203781, DOI 10.1090/advsov/013
- Henryk Minc, Nonnegative matrices, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 932967
- Michio Morishima, Equilibrium, stability, and growth: A multi-sectoral analysis, Clarendon Press, Oxford, 1964. MR 0183526
- Roger D. Nussbaum, Convexity and log convexity for the spectral radius, Linear Algebra Appl. 73 (1986), 59–122. MR 818894, DOI 10.1016/0024-3795(86)90233-8
- Roger D. Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc. 75 (1988), no. 391, iv+137. MR 961211, DOI 10.1090/memo/0391
- Roger D. Nussbaum, Iterated nonlinear maps and Hilbert’s projective metric. II, Mem. Amer. Math. Soc. 79 (1989), no. 401, iv+118. MR 963567, DOI 10.1090/memo/0401
- Yorimasa Oshime, An extension of Morishima’s nonlinear Perron-Frobenius theorem, J. Math. Kyoto Univ. 23 (1983), no. 4, 803–830. MR 728162, DOI 10.1215/kjm/1250521436
- Dinah Rosenberg and Sylvain Sorin, An operator approach to zero-sum repeated games, Israel J. Math. 121 (2001), 221–246. MR 1818389, DOI 10.1007/BF02802505
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- W. H. M. Zijm, Generalized eigenvectors and sets of nonnegative matrices, Linear Algebra Appl. 59 (1984), 91–113. MR 743048, DOI 10.1016/0024-3795(84)90161-7
Bibliographic Information
- Stéphane Gaubert
- Affiliation: INRIA, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cédex, France
- Email: Stephane.Gaubert@inria.fr
- Jeremy Gunawardena
- Affiliation: Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02139
- Address at time of publication: Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115
- Email: jgunawardena@cgr.harvard.edu, jeremy@hms.harvard.edu
- Received by editor(s): May 10, 2001
- Received by editor(s) in revised form: July 2, 2003
- Published electronically: March 23, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4931-4950
- MSC (2000): Primary 47J10; Secondary 47H09, 47H07, 15A48
- DOI: https://doi.org/10.1090/S0002-9947-04-03470-1
- MathSciNet review: 2084406