Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the representation of integers as linear combinations of consecutive values of a polynomial


Authors: Jacques Boulanger and Jean-Luc Chabert
Journal: Trans. Amer. Math. Soc. 356 (2004), 5071-5088
MSC (2000): Primary 11A67; Secondary 11P05, 11R18, 13F20
DOI: https://doi.org/10.1090/S0002-9947-04-03569-X
Published electronically: June 29, 2004
MathSciNet review: 2084411
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K$ be a cyclotomic field with ring of integers $\mathcal {O}_{K}$ and let $f$ be a polynomial whose values on $\mathbb {Z}$ belong to $\mathcal {O}_{K}$. If the ideal of $\mathcal {O}_{K}$ generated by the values of $f$ on $\mathbb {Z}$ is $\mathcal {O}_{K}$ itself, then every algebraic integer $N$ of $K$ may be written in the following form: \[ N=\sum _{k=1}^l\;\varepsilon _{k}f(k)\] for some integer $l$, where the $\varepsilon _{k}$’s are roots of unity of $K$. Moreover, there are two effective constants $A$ and $B$ such that the least integer $l$ (for a fixed $N$) is less than $A \widetilde {N}+B$, where \[ \widetilde {N}= \max _{\sigma \in Gal(K/\mathbb {Q})} \; \vert \sigma (N) \vert .\]


References [Enhancements On Off] (What's this?)

  • P. T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55 (1949), 1180–1181.
  • Michael N. Bleicher, On Prielipp’s problem on signed sums of $k$th powers, J. Number Theory 56 (1996), no. 1, 36–51. MR 1370195, DOI https://doi.org/10.1006/jnth.1996.0004
  • O. Bodini, P. Duchet, and S. Lefranc, Autour d’un théorème d’Erdös sur les combinaisons à coefficients $\pm 1$ des premiers carrés, La Nouvelle Revue des Mathématiques de l’Enseignement Supérieur 112 (2001/2002), 3–8.
  • J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged) 21 (1960), 111–124. MR 130236
  • P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de “L’Enseignement Mathématique” [Monographs of L’Enseignement Mathématique], vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980. MR 592420
  • R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964), 275–285. MR 162759
  • Helmut Koch, Number theory, Graduate Studies in Mathematics, vol. 24, American Mathematical Society, Providence, RI, 2000. Algebraic numbers and functions; Translated from the 1997 German original by David Kramer. MR 1760632
  • Melvyn B. Nathanson, Elementary methods in number theory, Graduate Texts in Mathematics, vol. 195, Springer-Verlag, New York, 2000. MR 1732941
  • N.J.A. Sloane, The On-Line Encyclopedia in Integer Sequences, http://www.research. att.com/ñjas/sequences/index.html
  • Hong Bing Yu, Signed sums of polynomial values, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1623–1627. MR 1887008, DOI https://doi.org/10.1090/S0002-9939-01-06461-9

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11A67, 11P05, 11R18, 13F20

Retrieve articles in all journals with MSC (2000): 11A67, 11P05, 11R18, 13F20


Additional Information

Jacques Boulanger
Affiliation: Department of Mathematics, Université de Picardie, 80039 Amiens, France, LAMFA CNRS-UMR 6140, France
Email: jaboulanger@wanadoo.fr

Jean-Luc Chabert
Affiliation: Department of Mathematics, Université de Picardie, 80039 Amiens, France, LAMFA CNRS-UMR 6140, France
Email: jean-luc.chabert@u-picardie.fr

Received by editor(s): April 20, 2003
Received by editor(s) in revised form: September 24, 2003
Published electronically: June 29, 2004
Article copyright: © Copyright 2004 American Mathematical Society