Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle
HTML articles powered by AMS MathViewer
- by Jason L. Metcalfe
- Trans. Amer. Math. Soc. 356 (2004), 4839-4855
- DOI: https://doi.org/10.1090/S0002-9947-04-03667-0
- Published electronically: June 25, 2004
- PDF | Request permission
Abstract:
In this paper, we show that certain local Strichartz estimates for solutions of the wave equation exterior to a convex obstacle can be extended to estimates that are global in both space and time. This extends the work that was done previously by H. Smith and C. Sogge in odd spatial dimensions. In order to prove the global estimates, we explore weighted Strichartz estimates for solutions of the wave equation when the Cauchy data and forcing term are compactly supported.References
- N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian” [Comm. Partial Differential Equation 25 (2000), no. 11-12 2171–2183; MR1789924 (2001j:35180)], Comm. Partial Differential Equations 28 (2003), no. 9-10, 1675–1683. MR 2001179, DOI 10.1081/PDE-120024528
- Michael Christ and Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), no. 2, 409–425. MR 1809116, DOI 10.1006/jfan.2000.3687
- Lars Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR 1466700
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- Peter D. Lax and Ralph S. Phillips, Scattering theory, 2nd ed., Pure and Applied Mathematics, vol. 26, Academic Press, Inc., Boston, MA, 1989. With appendices by Cathleen S. Morawetz and Georg Schmidt. MR 1037774
- R. B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), no. 1, 43–59. MR 523601, DOI 10.1215/S0012-7094-79-04604-0
- Cathleen S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math. 28 (1975), 229–264. MR 372432, DOI 10.1002/cpa.3160280204
- Cathleen S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961), 561–568. MR 132908, DOI 10.1002/cpa.3160140327
- Cathleen S. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math. 19 (1966), 439–444. MR 204828, DOI 10.1002/cpa.3160190407
- Cathleen S. Morawetz, James V. Ralston, and Walter A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977), no. 4, 447–508. MR 509770, DOI 10.1002/cpa.3160300405
- James Ralston, Note on the decay of acoustic waves, Duke Math. J. 46 (1979), no. 4, 799–804. MR 552527
- Hart F. Smith and Christopher D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), no. 11-12, 2171–2183. MR 1789924, DOI 10.1080/03605300008821581
- Hart F. Smith and Christopher D. Sogge, On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc. 8 (1995), no. 4, 879–916. MR 1308407, DOI 10.1090/S0894-0347-1995-1308407-1
- Walter A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math. 28 (1975), 265–278. MR 367461, DOI 10.1002/cpa.3160280205
- Robert S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis 5 (1970), 218–235. MR 0257581, DOI 10.1016/0022-1236(70)90027-3
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- Michael E. Taylor, Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math. 29 (1976), no. 1, 1–38. MR 397175, DOI 10.1002/cpa.3160290102
- Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147, DOI 10.1007/978-1-4684-9320-7
- B. R. Vaĭnberg, The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as $t\rightarrow \infty$ of the solutions of nonstationary problems, Uspehi Mat. Nauk 30 (1975), no. 2(182), 3–55 (Russian). MR 0415085
Bibliographic Information
- Jason L. Metcalfe
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 733199
- Email: metcalfe@math.gatech.edu
- Received by editor(s): November 14, 2002
- Published electronically: June 25, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4839-4855
- MSC (2000): Primary 35L05
- DOI: https://doi.org/10.1090/S0002-9947-04-03667-0
- MathSciNet review: 2084401