Second order parabolic equations in Banach spaces with dynamic boundary conditions
HTML articles powered by AMS MathViewer
- by Ti-Jun Xiao and Jin Liang
- Trans. Amer. Math. Soc. 356 (2004), 4787-4809
- DOI: https://doi.org/10.1090/S0002-9947-04-03704-3
- Published electronically: June 25, 2004
- PDF | Request permission
Abstract:
In this paper, we exhibit a unified treatment of the mixed initial boundary value problem for second order (in time) parabolic linear differential equations in Banach spaces, whose boundary conditions are of a dynamical nature. Results regarding existence, uniqueness, continuous dependence (on initial data) and regularity of classical and strict solutions are established. Moreover, several examples are given as samples for possible applications.References
- Kevin T. Andrews, K. L. Kuttler, and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl. 197 (1996), no. 3, 781–795. MR 1373080, DOI 10.1006/jmaa.1996.0053
- H. T. Banks and D. J. Inman, On damping mechanisms in beams, ASME Trans. 58 (1991), 716-723.
- H. Brézis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Functional Analysis 29 (1978), no. 3, 328–335. MR 512249, DOI 10.1016/0022-1236(78)90035-6
- T. P. Chang, Forced vibration of a mass-loaded beam with a heavy tip body, J. Sound Vibration 164 (1993), 471-484.
- Robert Wayne Carroll and Ralph E. Showalter, Singular and degenerate Cauchy problems, Mathematics in Science and Engineering, Vol. 127, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460842
- Valentina Casarino, Klaus-Jochen Engel, Rainer Nagel, and Gregor Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory 47 (2003), no. 3, 289–306. MR 2012840, DOI 10.1007/s00020-002-1163-2
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- Joachim Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations 18 (1993), no. 7-8, 1309–1364. MR 1233197, DOI 10.1080/03605309308820976
- Hector O. Fattorini, The Cauchy problem, Encyclopedia of Mathematics and its Applications, vol. 18, Addison-Wesley Publishing Co., Reading, Mass., 1983. With a foreword by Felix E. Browder. MR 692768
- H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, vol. 108, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 99. MR 797071
- Angelo Favini, Giséle Ruiz Goldstein, Jerome A. Goldstein, and Silvia Romanelli, $C_0$-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc. 128 (2000), no. 7, 1981–1989. MR 1695147, DOI 10.1090/S0002-9939-00-05486-1
- Angelo Favini, Gisèle R. Goldstein, Jerome A. Goldstein, and Silvia Romanelli, Generalized Wentzell boundary conditions and analytic semigroups in $C[0,1]$, Semigroups of operators: theory and applications (Newport Beach, CA, 1998) Progr. Nonlinear Differential Equations Appl., vol. 42, Birkhäuser, Basel, 2000, pp. 125–130. MR 1788874
- Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Silvia Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evol. Equ. 2 (2002), no. 1, 1–19. MR 1890879, DOI 10.1007/s00028-002-8077-y
- Angelo Favini and Enrico Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), no. 5, 1005–1022. MR 1123349
- Marié Grobbelaar-van Dalsen and Niko Sauer, Dynamic boundary conditions for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 1–11. MR 1025450, DOI 10.1017/S030821050002391X
- Thomas Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 43–60. MR 1025453, DOI 10.1017/S0308210500023945
- John Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential Equations 50 (1983), no. 2, 163–182. MR 719445, DOI 10.1016/0022-0396(83)90073-6
- J.-L. Lions, Équations différentielles opérationnelles et problèmes aux limites, Die Grundlehren der mathematischen Wissenschaften, Band 111, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961 (French). MR 0153974
- Enrico Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), no. 2, 508–530. MR 896179, DOI 10.1016/0022-247X(87)90104-1
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Yoshiyuki Sakawa and Zheng-Hua Luo, Modeling and control of coupled bending and torsional vibrations of flexible beams, IEEE Trans. Automat. Control 34 (1989), no. 9, 970–977. MR 1007424, DOI 10.1109/9.35810
- R. E. Showalter, Degenerate evolution equations and applications, Indiana Univ. Math. J. 23 (1973/74), 655–677. MR 333835, DOI 10.1512/iumj.1974.23.23056
- H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 500580
- Ti-Jun Xiao and Jin Liang, The Cauchy problem for higher-order abstract differential equations, Lecture Notes in Mathematics, vol. 1701, Springer-Verlag, Berlin, 1998. MR 1725643, DOI 10.1007/978-3-540-49479-9
- Ti-Jun Xiao and Jin Liang, Higher order abstract Cauchy problems: their existence and uniqueness families, J. London Math. Soc. (2) 67 (2003), no. 1, 149–164. MR 1942417, DOI 10.1112/S0024610702003794
Bibliographic Information
- Ti-Jun Xiao
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China – and – Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
- MR Author ID: 269685
- Email: xiaotj@ustc.edu.cn, tixi@fa.uni-tuebingen.de
- Jin Liang
- Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China – and – Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
- MR Author ID: 238393
- Email: jliang@ustc.edu.cn, jili@fa.uni-tuebingen.de
- Received by editor(s): June 24, 2002
- Published electronically: June 25, 2004
- Additional Notes: The first author acknowledges support from the Alexander-von-Humboldt Foundation and from CAS and NSFC. The second author acknowledges support from the Max-Planck Society and from CAS and EMC
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4787-4809
- MSC (2000): Primary 34G10, 47D06, 35G10
- DOI: https://doi.org/10.1090/S0002-9947-04-03704-3
- MathSciNet review: 2084398