An analogue of continued fractions in number theory for Nevanlinna theory
HTML articles powered by AMS MathViewer
- by Zhuan Ye
- Trans. Amer. Math. Soc. 356 (2004), 4829-4838
- DOI: https://doi.org/10.1090/S0002-9947-04-03709-2
- Published electronically: June 25, 2004
- PDF | Request permission
Abstract:
We show an analogue of continued fractions in approximation to irrational numbers by rationals for Nevanlinna theory. The analogue is a sequence of points in the complex plane which approaches a given finite set of points and at a given rate in the sense of Nevanlinna theory.References
- Huaihui Chen and Zhuan Ye, The error term in Nevanlinna’s inequality, Sci. China Ser. A 43 (2000), no. 10, 1060–1066. MR 1802149, DOI 10.1007/BF02898240
- William Cherry and Zhuan Ye, Nevanlinna’s theory of value distribution, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. The second main theorem and its error terms. MR 1831783, DOI 10.1007/978-3-662-12590-8
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- A. Hinkkanen, A sharp form of Nevanlinna’s second fundamental theorem, Invent. Math. 108 (1992), no. 3, 549–574. MR 1163238, DOI 10.1007/BF02100617
- A. Ya. Khinchin, Continued fractions, University of Chicago Press, Chicago, Ill.-London, 1964. MR 0161833
- Serge Lang, The error term in Nevanlinna theory, Duke Math. J. 56 (1988), no. 1, 193–218. MR 932862, DOI 10.1215/S0012-7094-88-05609-8
- Serge Lang, The error term in Nevanlinna theory. II, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 115–125. MR 1003864, DOI 10.1090/S0273-0979-1990-15857-4
- Serge Lang, Introduction to Diophantine approximations, 2nd ed., Springer-Verlag, New York, 1995. MR 1348400, DOI 10.1007/978-1-4612-4220-8
- Serge Lang and William Cherry, Topics in Nevanlinna theory, Lecture Notes in Mathematics, vol. 1433, Springer-Verlag, Berlin, 1990. With an appendix by Zhuan Ye. MR 1069755, DOI 10.1007/BFb0093846
- Serge Lang and Hale Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972). MR 306131, DOI 10.1007/978-1-4612-2120-3_{5}
- Joseph Miles, A sharp form of the lemma on the logarithmic derivative, J. London Math. Soc. (2) 45 (1992), no. 2, 243–254. MR 1171552, DOI 10.1112/jlms/s2-45.2.243
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- Charles F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory 21 (1985), no. 3, 347–389. MR 814011, DOI 10.1016/0022-314X(85)90061-7
- Min Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1850002, DOI 10.1142/9789812810519
- Min Ru and Paul Vojta, Schmidt’s subspace theorem with moving targets, Invent. Math. 127 (1997), no. 1, 51–65. MR 1423025, DOI 10.1007/s002220050114
- L. R. Sons and Zhuan Ye, The best error terms of classical functions, Complex Variables Theory Appl. 28 (1995), no. 1, 55–66. MR 1700264
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Paul Vojta, Nevanlinna theory and Diophantine approximation, Several complex variables (Berkeley, CA, 1995–1996) Math. Sci. Res. Inst. Publ., vol. 37, Cambridge Univ. Press, Cambridge, 1999, pp. 535–564. MR 1748613
- Yuefei Wang, Sharp forms of Nevanlinna’s error terms, J. Anal. Math. 71 (1997), 87–102. MR 1454245, DOI 10.1007/BF02788024
- Pit-Mann Wong and Wilhelm Stoll, Second main theorem of Nevanlinna theory for nonequidimensional meromorphic maps, Amer. J. Math. 116 (1994), no. 5, 1031–1071. MR 1296724, DOI 10.2307/2374940
- Zhuan Ye, On Nevanlinna’s error terms, Duke Math. J. 64 (1991), no. 2, 243–260. MR 1136375, DOI 10.1215/S0012-7094-91-06412-4
- Zhuan Ye, On Nevanlinna’s second main theorem in projective space, Invent. Math. 122 (1995), no. 3, 475–507. MR 1359601, DOI 10.1007/BF01231453
- Zhuan Ye, An analogue of Khinchin’s theorem in Diophantine approximation for Nevanlinna theory, XVIth Rolf Nevanlinna Colloquium (Joensuu, 1995) de Gruyter, Berlin, 1996, pp. 309–319. MR 1427096, DOI 10.1002/(SICI)1099-0488(19960130)34:2<309::AID-POLB11>3.0.CO;2-N
Bibliographic Information
- Zhuan Ye
- Affiliation: Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115
- Email: ye@math.niu.edu
- Received by editor(s): July 25, 2002
- Published electronically: June 25, 2004
- © Copyright 2004 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 4829-4838
- MSC (2000): Primary 30D35, 11J70
- DOI: https://doi.org/10.1090/S0002-9947-04-03709-2
- MathSciNet review: 2084400